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What is turbulence?



What is turbulence?

Wikipedia:

In fluid dynamics, turbulence or
turbulent flow is any pattern of fluid
motion characterized by chaotic
changes in pressure and flow
velocity. It is in contrast to a laminar
flow regime, which occurs when a
fluid flows in parallel layers, with no
disruption between those layers.
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Turbulence is characterized by the
breaking of symmetry

Very ‘slow’ flow is symmetric (R = 0.16):
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Turbulence is characterized by the
breaking of symmetry

Navier-Stokes equation:
v +v-Vv= ! Vp + vV2¥
S TV V= ; p+ vV

Very ‘slow’ flow is symmetric (R = 5.1):
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Turbulence is characterized by the
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Navier-Stokes equation:
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S TV V= ; p+ vV
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Turbulence iIs characterized by the
breaking of symmetry

First real symmetry breaking (R = 40):

Up - Down
Time-translation
Space-translation (z-axis)

Very ‘slow’ flow is symmetric (R = 26):

Left — Right : Breaks-Down
Up - Down

Time-translation
Space-translation (z-axis)

All photographs by S. Taneda



Turbulence iIs characterized by the
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First real symmetry breaking (R = 105):
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Turbulence iIs characterized by the
breaking of symmetry

First real symmetry breaking (R = 105):

Up - Down
Time-translation =—> Time-periodic
Space-translation (z-axis)

Further increase of flow speed (R = 700):

Up — Down : Breaks-Down
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All photographs by S. Taneda



Turbulence iIs characterized by the
breaking of symmetry
From deterministic to probabilistic system
Chaos only in the deterministic sense:
- Signals look disorganized

- Signals appear unpredictable

However some properties are reproducible




Fully developed ‘steady-state’ turbulence:
average velocity remains constant
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Fully developed 'steady-state’ turbulence:
construct a histogram for limited time-window

time
(a) steady mean flow



Fully developed 'steady-state’ turbulence:
construct a histogram for limited time-window

time
(a) steady mean flow N



Fully developed 'steady-state’ turbulence : while
‘raw’ signal changes with time the statistics are

constant
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We can extract different scales by
‘filtering’

Decomposition of multiplicative time series
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We can extract different scales by
‘filtering’

Decomposition of multiplicative time series
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We can extract different scales by
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All these scales interact with each other -
thus making the problem non-linear

Decomposition of multiplicative time series

These scales can
exchange energy
with each other




All these scales interact with each other -
thus making the problem non-linear

Source: Wikipedia



All these scales interact with each other -
thus making the problem non-linear
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So are plasmas turbulent?



So are plasmas turbulent? YES I
How turbulence affects star formation

-1.0

2.0

LOG, , COLUMN DENSITY (g cm ™)

Source: Physics Today June 2018



So are plasmas turbulent? YES I
Astrophysical examples

Highly turbulent supernova remnant Accretion disks require plasma
Crab nebula turbulence to explain energy release in
hot disks

Sources: NASA and Gauss Center
for supercomputing




So are plasmas turbulent? YES I
Solar Physics

Sun is one turbulent ball of fusing Turbulence might explain ‘heating’ of
plasma the solar wind

Magnetopause
Bow Shock
N

Solar Wind

Magnetosheath

Sources: NASA



So are plasmas turbulent? YES I
Inertial confinement

Using lasers to show how turbulence in plasmas can enhance magnetic fields
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So are plasmas turbulent? YES I
Magnetic Confined Plasmas

Sources: G.R. McKee (DIII-D
tokamak)



Turbulence determines confinement and thus
whether we achieve ‘ignition’ in a Tokamak
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The Lawson criterion determines
whether we achieve ‘ignition’
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The Lawson criterion determines
whether we achieve ‘ignition’
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The Lawson criterion determines
whether we achieve ‘ignition’

To reach ignition using DT:
T, ~10* on DIlI-D
10° n, ~ 10** on DIII-D
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The Lawson criterion determines
whether we achieve ‘ignition’
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The Lawson criterion determines
whether we achieve ‘ignition’

To reach ignition using DT:
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The Lawson criterion determines
whether we achieve ‘ignition’
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Transport in a plasmais
predominantly turbulent

/ Classical transport

through collisions only is
\ too small (~10-?) to

explain transport in a
plasma



Transport in a plasmais
predominantly turbulent

Particle bounces back, like in
magnetic mirror. Collisions make it
move from it's path resulting in
banana orbit and eventually outward
transport

Neo-Classical transport
through collisions only is
too small (~101) to
explain transport in a
plasma




Turbulence is driven by gradients. These gradients provide
the drive for the growth of turbulent eddies

DIlI-D theory group
General Atomics



Instabilities such as *heavy’ on ‘light’ or
temperature gradients drive turbulence

Gravity (un)stabilizes Magnetic field (un)stabilizes



We can characterize the turbulence by
‘eddies’ of various sizes/shapes
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These eddies create an E-Field, which Iin
combination with the B-field results in ‘circulation’
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Diffusion increases as the temperature increases
thus limiting/requlating the temperature gradients




So controlling the 'size’ and ‘correlation time’ of
these blobs allows us to ‘control’ confinement
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These eddies ‘live’ in a ‘background’ flow
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By changing the ‘background flow’ we can tilt and
eventually break these eddies
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By changing the ‘background flow’ we can tilt and
eventually break these eddies




Turbulent transport is affected by gradients that
drive fluctuations, the shear that suppresses them

Growth rates J

Turbulent particle
transport




Turbulent transport is affected by gradients that
drive fluctuations, the shear that suppresses them
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Turbulent transport is affected by gradients that
drive fluctuations, the shear that suppresses them
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Turbulent transport is affected by gradients that
drive fluctuations, the shear that suppresses them
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Originally, confinement was limited and profiles
were stiff (i.e. gradient was limited)




So to raise the temperature, the radius of the
device has to increase

\




The other option is to ‘break’ the stiffness in the
profiles : creation of Transport Barrier
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Even better is when the transport barrier is at the plasma
edge, which results in a larger volume at fusion conditions




LAPD: Linear machine that shows how introduction of
shear flow reduces outward transport
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LAPD: Linear machine that shows how introduction of
shear flow reduces outward transport
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LAPD: Linear machine that shows how introduction of
shear flow reduces outward transport

Unbiased

Biased
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LAPD: Linear machine that shows how introduction of

shear flow reduces outward transport
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LAPD: Linear machine that shows how introduction of

shear flow reduces outward transport
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An increase in power triggers the formation
of a barrier at the plasma edge in a tokamak
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In a Tokamak, a similar bifurcation can be observed. This
results in an important improvement in confinement

Increase in injected power, triggers
reduction in transport
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In a Tokamak, a similar bifurcation can be observed. This
results in an important improvement in confinement

Increase in injected power, triggers
reduction in transport

[2J
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In a Tokamak, a similar bifurcation can be observed. This
results in an important improvement in confinement

Increase in injected power, triggers
reduction in transport

[2J

The density gradient steepens
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At the L- to H-mode transition, first the density
fluctuations at the edge are reduced, when the shear >=
decorrelation of fluctuations
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We can slow down the L- to H-mode transition to
better understand the underlying dynamics

L. Schmitz et al 2014 NF 54 073012
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Evidence of how the energy transfer changes to
predominantly to the flow at LCO transition
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G.R. Tynan et al 2013 NF 53 073053

Before transition energy is
dissipated to ‘mean’ flow and
turbulence.

Total energy input remains same at
transition (gradients are still the
same), but energy distribution
changes

Energy transfer from turbulence
into (mean) shear flow

Turbulence decorrelation rate in
the plasma frame



Dynamics behind the suppression of turbulent transport at
the plasma edge follows a predator prey model

Gradient
Drive

Transport Reynolds Stress

Turbulence
(prey)

N N

Shearing Shearing
Saturation Saturation

‘damping

Transport

Zonal Flow inhibition



Zonal Flows (or GAMs) are superimposed on the
mean flow and can help trigger a transition
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Mean-flow shear
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Zonal Flows (or GAMs) are superimposed on the
mean flow and can help trigger a transition
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For example, there is no change in Er shear across
different initial L-mode densities before LH-transition
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amount of power needed for the L- to H-mode transition
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However, there is a strong density dependence on the

-15¢

ASDEX-Upgrade

4+ L-mode @® L-H transition

X Intermediate { H-mode

P. Sauter, et al. NF 52, 012001 (2012)

P, (2.35/B1)08 [MW]

w

N}

—

o

ASDEX-Upgrade

4 — | | T | T

5| ® —=—10MA |
- — ¢ -0.8 MA

3| ¥ --0--0.6 MA

Bl

[ #

51

1 [l

5L

0 I | L I 1 1

N, [1019 m3

F. Ryter et al 2013 NF 53 113003



The influence on turbulence characteristics just before L-
to H-mode transition show importance of ZF versus

turbulence
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There is a clear difference in poloidal flow of the
fluctuations (not mean flow) at low versus high density

o

DIII-D in L-mode

-+
+ |
+ 4
0 ‘
. n=1! Tellem™
' r.-i'é-:‘ﬂlrr:"
L Seiicm”
0.90 0.95 1.00
r/o

Z.Yan et al 2013 NF 53 113038



At low density, the ZFs provide the ability to cross the
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Turbulence in plasmas is everywhere

* Turbulence is the result of the breaking of
symmetry

— From deterministic to probabilistic system

* Energy in eddies can be transferred to eddies at
different scales

* Plays animportant role in achieving fusion
energy

— Flow shear can help reduce ‘leakage’



