Introduction to Magnetic Fusion
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Why Use Fusion for Energy?

@ Worldwide, very long term availability of low cost fuel.
@ Negligible CO2 production from operations.

@ Fusion does not have fissions key issues:

@ No possibility of criticality accident or meltdown.
@ Short-lived radioactive waste.

@ Low risk of nuclear proliferation.

@ Steady power source that does not require inter-seasonal
energy storage (c.f., wind & solar at large scale)

@ Little land use (c.f., biomass at large scale)

@ No need to bury carbon dioxide
(c.f., biomass, coal, gas require unprecedented CO: storage)

(See Goldston, Bulletin of Atomic Scientists 2018, Why Fusion?)
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Fusion is by Quantum Tunneling

Tunneling Electrostatic
repulsion

Repulsion —
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Low-Z nuclei fuse best.

They can get closer, and the barrier is weaker.



Two Cycles Sustain a Deuterium-Tritium Burn

T ~ 14 keV ~ 400g/day
~ 160M K / \

Deuterium 'l’

2
K//. .a)) Fusion

(& . Reaction
/  \
Alpha | Fast @
Particle eutro
. . .“N tron
heat tritium

D+7T=«x(3.5 MeV) + n (14.1 MeV)
N+%%i=0+1 + 4.8 MeV
Fuel is plentiful & cheap D & eLi



Fusion Requires very High Temperatures
Because of Electrostatic Repulsion of Nuclei

o power density

= 1/5 fusion power
density

~ 1.7 106 W/m3

Fuel energy density
=15 atm

Confinement time
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Need to “confine” energy
for ~ 1 sec for DT
At very (!) high T.

1 eV =11,600 K, 10 keV = 116M K
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A Fusion Plasma Must be
Very, Very Nearly Charge Neutral

You need about 1020/m?3 ion density to get a
useful power density. e = 1.602 10-1°C

If no electrons, this is a charge density, o = 16 C/m3.

V.E = p/e0; For a sphere, Gauss = Er = (411/3)r30/e0

Er = r16/(3x8.85 10-12) = 6 101V/m ( )
Cannot support macroscopic charge imbalance!

n, —ZnZ = Np + Ny +Zn
zmp
eff_ Z”

Impurities (including He Fusmn product) waste plasma
pressure on themselves and on Z; electrons.



Fusion Fuel can be Confined Three Ways

Plasma = ionized gas, occurs at T > 10,000 K

GRAVITATIONAL MAGNETIC INERTIAL
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We focus in this lecture on magnetic confinement.



Toroidal Plasmas Need Twist

Particles follow field lines
but also drift vertically.

Twisting the field lines
cancels drifts.
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Stellarators Get Twist Differently

The twisting plasma “pulls” the field lines with it.
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EU, Germany: W7X
superconducting stellarator

Princeton: NSTX-U

low aspect ratio tokamak
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medium-size tokamak
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Concept for a Tokamak Fusion Pilot Plant

Poloidal Field
Magnets

m DA

N Toroidal Field
\

Cryostat Vacuum

“\'Blanket/ Divertor Wpesel

Central Solenoid

Gets magnetic twist with plasma current
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Positive-ion Based Neutral Atom Beams is
a Well Developed Technology

Accelerator

_ Deflector
lon Neutralizer magnet

source
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Up to 40 MW was delivered to TFTR at PPPL
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When Fast Ion Pressure is Modest
Ions Slow Down by Binary Collisions with Plasma

#84X0974

Both the energy and angular dependence
of the measured spectra agree with theory
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Things Get More Interesting at
High Fast Ion Pressure
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Negative-Ion Based Neutral Beams
are a Challenging Technology

@ Larger denser plasmas
need higher energy beams
for adequate penetration

N o Higher energy D+ beams

| ,;f dont charge-exchange well
&\ | b/c velocity too high

'&,
@ Make D- beams,

and strip them of their
extra electron

‘. @ Very tricky new
~ technology
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Lower Hybrid and Ion Cyclotron
Frequency Antennas in JET

1
Lower *{
Hybrid | Ion
3.5 GHz i E ' Cyclotron
(Drives —l @8 - B ° _— 30MHz
c;\ur;er;t | " (Cheapest,
ard to hard to
couple) couple)

@ Neither wave propagates in vacuum with impressed k
@ Antenna near field must be in contact with plasma
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Electron Cyclotron Antenna
Manufactured by PPPL

input waveguide holder

fixed mirror

~ toroidal steering fork

ste;g:rable mirror

poloidal push mechanism

@ Steerable waves propagate in vacuum to plasma
@ Very high frequency sources are coming along well.
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Fusion Temperatures have Been Achieved
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Fusion Power Density Depends on <ov>/T2, 3 and B

Magnetically confined plasmas are generally limited in

= plasma pressure / magnetic pressure
3 = (ni + ne)T/(B2/2p0) = for nj < ne, & np = nt = n;/2

Prus IS @ key bang-for-the-buck parameter.

Implications:
@ There is a lot to be said for high 3
@ There is a drive for high-field magnefts
@ Operate at the T that maximizes <ov>pr/T?

@ You also have to worry about fusion energy gain.
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Plasma Energy Gain is Set By Balance
Between Heating and Losses

@ Local power balance (in the core) for steady operation

;’[ne — anJT

transport
TE

d 3 d
%Uth =5 aa[ne A an]T == nDnT<av>DT SRR

T and E_ are in Joules, U is energy density, Joules/ m®, p is power density, Watts/m?

@ « heating is in the core and only core radiation short-circuits
magnetic confinement of heat.

@ Here we assume 100% efficiency of « particle heating.
ITER will test this!

@ When we come to plant efficiency, we will need to include the
efficiency of producing paux-



Plasma Gain, Qp, Depends on nTzgtransport (1-fraq core)

2% transport ; =
pa - paux ploss o Uth / t i pmd 7 e e RO S e T pmd,core /ploss

t t
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transport .
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E
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Looking at the (. = b © takes off as F, — 1
whole plasma: P AR R R

@ Qp =10 in ITER has Tip = 20 keV, neo = 1020/m3, 1 = 4sec;

NeoTioTe = 8 102! keV sec / m3 i



Prad Comes in Many Forms
Core Prad Short-Circuits Magnetic Confinement

continuum S \\ IR Continuum
\\\\“ X Bremsstrahlung
S

ionization--3

Continuum
Recombination

hmit free- bound

bound-bound BRI=Mgsle{lsigle]g

At fusion temperatures bremsstrahlung dominates.
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Bremsstrahlung can be a Significant Factor

DT & DD\
" bremsstrahlung
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All power densities scale as p2: nZz o« p2 for given T.



Engineering Gain, Qeng, Depends on
Plasma Gain and Electrical Efficiencies

(These are
Ptus + Paux Powers in
Watts, not
power densities
in Watts/m3.)

Fusion

pe,ne’r - - pe,in

Fig. 8.1: Depiction of energy components associated with a general fusion power plant.

Pe,net 5 })e,out " Pe,m; Pe,Out 0= nout( 2 ); P(i,z'n B /nm T
F (F oo gl
HTT 0 U e S5 o4 ;
Oeng = . TR ot (@, +1) = 0.3-0.4(Q, + 1)
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Te = Whlasma / Pheat
has Been Studied Extensively - 1

Stored Energy

Bf < Whlasma

TOTAL POWER (MW)

Power, currentf, magnetic field, plasma density are
varied systematically to find scalings (e.g., Goldston, 1982).
Only include conditions with low Prad,core To get Tgtransport,
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retransport has Been Studied Extensively - II

RMSE ~12%

Scaling with size is
determined by
bringing together
results from many
different experiments

o582 (5

75(s) =0.0562M "k, "1 )7 (MA)B;  (T)n [ (107 m )P (MW)a ™ (m)R' (m)
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Turbulence Calculations Complement Experiments

1.00
e (s)

Energy Confinement Time

Regression Fit

Turbulence
Simulation

.. Agreement is good,
but there can always be surprises..
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We are Getting There - 1
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We're Getting There - II

Magnetic (DT) 4 _

Magnetic (DD) Inertial (DT)

I
Inertial (DD)

1980 1990 2000 2010

Year

ITER: 102 J/pulse
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Science & Technology Challenges Remain

@ In pretty good shape (but
important issues remain):

@ Plasma heating and * Closed magnetic
: surfaces
current drive

Open
magnetic

D MClCI"OSCOPiC S'l'(lblll'l'y / \@5 surfaces
\ \ ,'f Scrape-off layer
\ |
% TurbUlen'I' +ransp0r+ Strike 4;; X-point

Private plasma

Divertor plates

@ An area of opportunity: @ The big unknowns:

@ High temperature 3
superconducting

@ Materials and blanket
magnets
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