Single Particle Motion

Will Fox PPPL and Princeton University

SULI Introductory Course in riasma rnysics Princeton Plasma Physics Laboratory June 11, 2018

Acknowledgement to Cami Collins (GA) for sharing a previous version of this presentation

My "Single-Researcher Motion" through Plasma Physics

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY

Analysis of current drive using MSE polarimetry without equilibrium reconstruction

Expts at NIF and OMEGA

Key Points to Take Away

- Motion of Single particles important to understand behavior of plasmas
- How magnetic fields modify single particle motion
 - Gyromotion about a guiding center
 - Forces can cause guiding center drift
- Some real life consequences:
 - Why do tokamaks have helical B fields?
 - Why do astrophysical shocks need a magnetic field?

References

- NRL Plasma Formulary <u>www.nrl.navy.mil/ppd/content/nrl-plasma-formulary</u>
- Introduction to Plasma Physics and Controlled Fusion by F. Chen

Single-particle motion is key intuition to understand many problems in plasma physics

Plasma confinement for MFE in stellarators and tokamaks

Magnetically-driven Inertial-confinement fusion in Z-pinches

Ideas behind single-particle physics threads all the way through to the most modern analysis and simulation techniques

- Idea allows plasma simulations that run on the world's fastest supercomputers
- Some of you may use "gyrokinetic" simulations during your internship, which take advantage of single-particle results here to speed up calculations

[K. Germaschewski, WF, et al, JCP 2016]

Ideas behind single-particle physics threads all the way through to the most modern analysis and simulation techniques

- Idea allows plasma simulations that run on the world's fastest supercomputers
- Some of you may use "gyrokinetic" simulations during your internship, which take advantage of single-particle results here to speed up calculations

[K. Germaschewski, WF, et al, JCP 2016]

Plasma Physics is the Basis for Fusion Research

- Sustained fusion reactions require enough particles (density) that are energetic enough (temperature) and collide often enough (confinement time).
- The fusion triple product is the figure of merit:

$$nT\tau_E \gtrsim 5 \times 10^{21} \text{ keV s m}^{-3}$$

 $T \sim 100-200$ million K $n \sim 2-3 \times 10^{20}$ ions/m³ $\tau \sim 1-2$ s

D & T is a plasma at these temperatures

We can understand a lot about how fusion devices confine plasma by studying single particle motion.

Typical velocity of a 100 million K ion:

$$kT = \frac{1}{2}mv_{\rm th}^2$$

$$v_{\rm th} \sim 6 \times 10^5 \ {\rm m/s}$$

Even with $\sim 10^{20}$ ions/m³, the ion would travel ~ 10 km before colliding with another

Plasmas are effectively collisionless (a common theme)

The ITER tokamak has R_{major} =6.2 m \rightarrow ~40 m circumference

The trick: use magnetic fields

Charged Particles Feel The (Lorentz) Force

• A particle with charge (q) moving with velocity (v) in the presence of electric and magnetic fields will experience a force:

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

We know from Newton's second law of motion that force causes acceleration:

 $\mathbf{F} = m\mathbf{a}$

A charged particle moving perpendicular to the magnetic field feels a force

How Does a Charged Particle Move in a Magnetic Field?

Consider the motion of a particle in a constant, uniform B field

Now let's do the algebra

Goal: Solve the Equations of Motion for a Charged Particle In A Magnetic Field

Take Another Time Derivative & Substitute to Obtain Differential Equations For Each Spatial Coordinate

Rewriting, we get

$$\ddot{v}_x = -\left(\frac{qB_z}{m}\right)^2 v_x \qquad \ddot{v}_y = -\left(\frac{qB_z}{m}\right)^2 v_y$$

These may remind you of the equations for a simple harmonic oscillator

Solve the Differential Equations

$$\ddot{v}_x = -\left(\frac{qB_z}{m}\right)^2 v_x \qquad \ddot{v}_y = -\left(\frac{qB_z}{m}\right)^2 v_y$$

These differential equations can be solved using sines and cosines:

$$v_{x} = v_{\perp} \cos\left(\frac{|q|B_{z}}{m}t + \phi_{0}\right)$$

$$v_{y} = \mp v_{\perp} \sin\left(\frac{|q|B_{z}}{m}t + \phi_{0}\right)$$
account for positive or negative q

$$v_{\perp} = \sqrt{(v_{x}^{2} + v_{y}^{2})}$$
an arbitrary phase to match the initial velocity perpendicular to B

The Result: Circular Motion About A Guiding Center

$$v_x = v_{\perp} \cos\left(\frac{|q|B_z}{m}t + \phi_0\right)$$
 $v_y = \mp v_{\perp} \sin\left(\frac{|q|B_z}{m}t + \phi_0\right)$

Integrating, we obtain

$$x = \frac{mv_{\perp}}{|q|B_z} \sin\left(\frac{|q|B_z}{m}t + \phi_0\right) + x_0 \qquad y = \pm \frac{mv_{\perp}}{|q|B_z} \cos\left(\frac{|q|B_z}{m}t + \phi_0\right) + y_0$$

- Charged particles undergo circular orbits about a guiding center $\,(x_0,y_0)\,$

$$r_L \equiv rac{m v_\perp}{|q|B}$$
 Larmor radius $\omega_c \equiv rac{|q|B}{m}$ Cyclotron frequency

$$x = r_L \sin(\omega_c t + \phi_0) + x_0$$
 $y = \pm r_L \cos(\omega_c t + \phi_0) + y_0$

Let's take
$$\,\,\phi_0=0\,\,$$
 and $\,\,x_0=y_0=0$

► X

В О

У

+

For a positively charged particle:

1. At t=0,

x = 0 $y = r_L$

 $x = r_L$ y = 0

$$x = r_L \sin(\omega_c t + \phi_0) + x_0$$
 $y = \pm r_L \cos(\omega_c t + \phi_0) + y_0$

Let's take $\phi_0=0$ and $x_0=y_0=0$

For a positively charged particle:

1. At t = 0,

x = 0 $y = r_L$

 $x = r_L$ y = 0

$$x = r_L \sin \left(\omega_c t + \phi_0\right) + x_0 \qquad \qquad y = \pm r_L \cos \left(\omega_c t + \phi_0\right) + y_0$$

$$x = r_L \sin(\omega_c t + \phi_0) + x_0$$
 $y = \pm r_L \cos(\omega_c t + \phi_0) + y_0$

Gyromotion of lons vs. Electrons

- The direction of gyromotion depends on the sign of the charge
- Ions generally have a much larger Larmor radius than electrons

In ITER, for a typical deuterium ion with $T_i=10$ keV and B=5 Tesla would have

$$v_{Ti} = \sqrt{\frac{kT_i}{m_i}} \approx 700 \text{ km/s}$$

$$r_L \equiv rac{m v_\perp}{|q|B} pprox 3 \ \mathrm{mm}$$

An electron with T_e=10 keV and B=5 Tesla has $r_L pprox 0.05 \ {
m mm}$ (60 times smaller)

Magnetic Confinement Devices Should Be Much Larger Than the Larmor Radius

$$\mathbf{r} = \left[r_L \sin\left(\omega_c t + \phi_0\right) + x_0\right] \mathbf{\hat{x}} + \left[r_L \cos\left(\omega_c t + \phi_0\right) + y_0\right] \mathbf{\hat{y}} + \left[v_{\parallel} t + z_0\right] \mathbf{\hat{z}}$$

Magnetic structure of the solar corona

Solar coronal plasma Te = 10 MK (100 eV) B = 100 G

Which way is the magnetic field running? Is the gradient stronger along or across the field?

Magnetic structure of the solar corona

Solar coronal plasma Te = 10 MK (100 eV) B = 100 G

Which way is the magnetic field running? Is the gradient stronger along or across the field?

Follow up: Shouldn't heat drain off the field lines? What keeps the corona hot? [An active research question!!]

Magnetic Mirrors

$\mathbf{B} = B_r \mathbf{\hat{r}} + B_z \mathbf{\hat{z}} \qquad \mathbf{F} = q(\mathbf{v} \times \mathbf{B})$

The B_r ends up causing additional acceleration in the z direction:

$$m\frac{dv_z}{dt} = -qv_\theta B_r$$

Result: gyromotion + mirror force in the $-\hat{\mathbf{z}}$ direction

$$F_z=-\frac{mv_\perp^2}{2B}\frac{\partial B_z}{\partial z}$$
 The magnetic moment is $\mu\equiv \frac{mv_\perp^2}{2B}$

mirror force $\mathbf{F}_{\parallel} = -\mu
abla_{\parallel} B$

Magnetic Moment Is Conserved

$$\mathbf{F}_{\parallel} = -\mu
abla_{\parallel} B ~~ \mu \equiv rac{m v_{\perp}^2}{2B}$$

The magnetic moment is a constant of motion $m \frac{dv_{||}}{dt} = -\mu \frac{dB}{ds}$ is the coordinate along the field line Then $\frac{d}{dt}\left(rac{1}{2}mv_{1}^{2}
ight)=-\murac{dB}{dt}$ conservation of energy: $\frac{d}{dt}\left(\frac{1}{2}mv_{\parallel}^2 + \frac{1}{2}mv_{\perp}^2\right) = 0$ this is μB

μ is an "adiabatic invariant" - a deeply utilized concept for magnetized plasmas

 $\blacksquare B \frac{d\mu}{\mu} = 0$

More Insight Into Magnetic Mirrors

2. Since energy is conserved, v_{\parallel} must decrease.

3. If B is strong enough, $v_{\parallel}
ightarrow 0$ and the particle is reflected.

$$E_o = \frac{1}{2}mv_{\parallel}^2 + \frac{1}{2}mv_{\perp}^2 \qquad v_{\parallel} = \pm \sqrt{\frac{2}{m}(E_o - \mu B)}$$

The particle is reflected when $E_o \leq \mu B$

Magnetic Mirror Confinement In Action

Multicusp Confinement Devices

Charged particles can be trapped by Earth's magnetic field

Early Fusion Experiments

Ex: Tandem Mirror Experiment (LLNL,1980's) and other variants (Polywell devices)

• A high frequency electro-magnetic field can be used to accelerate electrons or ions.

- A high frequency electro-magnetic field can be used to accelerate electrons or ions.
- Particle gains energy as the applied electric field component oscillates at the cyclotron frequency ("in-phase" with the gyro-orbit).

- A high frequency electro-magnetic field can be used to accelerate electrons or ions.
- Particle gains energy as the applied electric field component oscillates at the cyclotron frequency ("in-phase" with the gyro-orbit).

- A high frequency electro-magnetic field can be used to accelerate electrons or ions.
- Particle gains energy as the applied electric field component oscillates at the cyclotron frequency ("in-phase" with the gyro-orbit).

The Cyclotron Frequency is Important for Cyclotron Resonance Heating

- A high frequency electro-magnetic field can be used to accelerate electrons or ions.
- Particle gains energy as the applied electric field component oscillates at the cyclotron frequency ("in-phase" with the gyro-orbit).

$$\omega_c \equiv \frac{|q|B}{m}$$

Ex: For an electron, what *B* corresponds to 2.45 Ghz (microwave oven frequency)?

$$f = \frac{\omega_{ce}}{2\pi} = 2.45 \text{ GHz} \implies B = 875 \text{ Gauss}$$

Remember VTF? This is how we initiated our plasma!

Other Practical Applications: EM Emission from Charged Particle Acceleration

 $_{\sim} D$

• Electron cyclotron emission (measure T_e profiles)

Produced by acceleration of gyrating charged particle EM radiation emitted at discrete frequencies:

$$\omega = n\omega_{ce} \qquad \omega_{ce} = \frac{cD}{m_e}$$

Detected radiated power is proportional to T_e :

$$I(\omega) = \frac{\omega^2 k T_e}{8\pi^3 c^2}$$

Bremsstrahlung emission

Produced by deceleration of deflected charged particle

$$I(\omega) \propto \frac{n_e^2 Z_{eff} g}{\sqrt{T_e}} \exp\left(-\frac{\hbar\omega}{kT_e}\right)$$

Radiated power depends on $n_{\rm e}^{},$ Te, charge state $\rm Z_{eff}$ (can be used to measure $\rm Z_{eff}$)

B

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$
$$\mathbf{E} = E_x \mathbf{\hat{x}} \qquad \mathbf{B} = B_z \mathbf{\hat{z}}$$
$$\mathbf{B} \Rightarrow \mathbf{\hat{z}}$$

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$
$$\mathbf{E} = E_x \hat{\mathbf{x}} \qquad \mathbf{B} = B_z \hat{\mathbf{z}}$$
$$\overset{\mathbf{B}}{\bullet} \qquad \mathbf{y}$$
Accelerates due to E
$$\overset{\mathbf{F}}{\bullet} \rightarrow \qquad \overset{\mathbf{F}}{\bullet} \qquad \overset{\mathbf{F}}{$$

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$
$$\mathbf{E} = E_x \mathbf{\hat{x}} \qquad \mathbf{B} = B_z \mathbf{\hat{z}}$$
$$\mathbf{B} = B_z \mathbf{\hat{z}}$$
Accelerates due to E
$$\mathbf{E} \rightarrow \mathbf{\uparrow} \qquad \mathbf{Faster velocity increases vxB}$$
$$\mathbf{Faster velocity increases vxB}$$

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$
$$\mathbf{E} = E_x \mathbf{\hat{x}} \qquad \mathbf{B} = B_z \mathbf{\hat{z}}$$
$$\overset{\mathbf{B}}{\circ} \mathbf{y}$$
Accelerates due to E
$$\overset{\mathbf{F}}{\leftarrow} \mathbf{F}$$
aster velocity increases vxB
$$\overset{\mathbf{F}}{\leftarrow} \mathbf{F}$$
Decelerates

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

$$\mathbf{E} = E_x \hat{\mathbf{x}} \qquad \mathbf{B} = B_z \hat{\mathbf{z}}$$

$$\dot{v}_x = \frac{q}{m} (v_y B_z + E_x)$$

$$\overset{\bullet}{\mathbf{F}} \qquad \mathbf{v}_y = \mp v_\perp \sin\left(\frac{|q|B_z}{m}t + \phi_0\right) - \frac{E_x}{B_z}$$
Ion guiding center drifts in the direction $-\hat{\mathbf{y}}$

Guiding Center Drift Due to E x B

➤ X

В О

 $\mathbf{E} \rightarrow$

$$v_y = \mp v_\perp \sin\left(\frac{|q|B_z}{m}t + \phi_0\right) - \frac{E_x}{B_z}$$

Electron guiding center also drifts in the direction $-\mathbf{\hat{y}}$

The ExB drift can be written more generally as

$$\mathbf{r}_{\mathbf{E}} = \frac{\mathbf{E} \times \mathbf{B}}{B^2}$$

- ExB drift is independent of charge and mass
- Both electrons and ions move together

Preview for MHD lecture: Magnetic field also moves with plasma, via Faraday's law. Plasma and field can be thought of being "frozen together"

SNR1006

Collisionless SNR shocks shown to be the sites of cosmic ray acceleration. [Ackerman Science 2013] Shocks occur where supersonic flows interact. Conversion of kinetic energy to heat

In gas, inter-particle collisions mediate the shock

In plasma, *collisionless* shocks have shock width << mean-freepath.

Collective electromagnetic fields are required to mediate shock in collisionless plasmas

Proposed mechanisms:

- Pile-up of pre-existing field ("magnetized shocks" ... shortly)
- Self-generation of a turbulent magnetic field near shock by Weibel instability *

Magnetic fields mediate collisionless shocks in astrophysical plasmas

Magnetic fields mediate collisionless shocks in astrophysical plasmas

SNR1006

Shocks occur where supersonic flows interact. Conversion of kinetic energy to heat

In gas, inter-particle collisions mediate the shock

In plasma, *collisionless* shocks have shock width << mean-freepath.

Collective electromagnetic fields are required to mediate shock in collisionless plasmas

Proposed mechanisms:

- Pile-up of pre-existing field ("magnetized shocks" ... shortly)
- Self-generation of a turbulent magnetic field near shock by Weibel instability *

The Weibel field-generation mechanism was verified by laboratory experiments [Fox, et al, Phys. Rev Lett (2013); Huntington et al, Nat. Phys 2015] 43

Other Forces Can Also Cause Guiding Center Drift

Any force perpendicular to B can cause particles to drift

Drift due to force:
$$\mathbf{v_d} = \frac{1}{q} \frac{\mathbf{F} \times \mathbf{B}}{B^2}$$

Examples of forces: $\mathbf{F_g} = m\mathbf{g}$ gravity
 $\mathbf{F_{cf}} = \frac{mv_{\parallel}^2}{R_c} \mathbf{\hat{r}}$ centrifugal

- Bend the magnetic field into a donut shape
- No end losses because the field lines go around and close on themselves
- BUT a particle following a toroidal magnetic field would experience ${\boldsymbol{F}}_{cf}$

Curvature Drift Due to Bending Field Lines

Spatially Varying Magnetic Field Strength Also Causes Drift

 ∇B

Spatially Varying Magnetic Field Strength Also Causes Drift

 The gyro-radius will be larger where the field is weaker and smaller where the field is stronger

Spatially Varying Magnetic Field Strength Also Causes Drift

- The gyro-radius will be larger where the field is weaker and smaller where the field is stronger
- The resulting drift velocity is described by:

$$\mathbf{V}_{\nabla \mathbf{B}} = \frac{m v_{\perp}^2}{2qB} \frac{\mathbf{B} \times \nabla B}{B^2}$$

Application: What Happens To Charged Particles In A Purely Toroidal Magnetic Field?

 Charged particles in a curved magnetic field will experience both
 \Barbox B and curvature drift: these effects add

Charged Particles Will Drift Outward

- Charged particles in a curved magnetic field will experience both ∇B and curvature drift

• This means that no matter what, particles in a torus with a purely toroidal field will drift radially out and hit the walls.

Tokamak Solution: Add Poloidal Magnetic Field

Toroidal: long way around

Poloidal: short way around

- 1. Use external coils to apply a toroidal magnetic field
- 2. Drive toroidal current in the plasma to generate a poloidal magnetic field

- The resulting helical magnetic field is much better at confining charged particles.
- The challenge: how to drive current in plasma in steady state while keeping the plasma stable and free of disruptions?

There Are Two Main Classes of Particle Orbits In Tokamaks

$$\mathbf{V}_{\mathbf{R}} + \mathbf{V}_{\nabla \mathbf{B}} = \frac{m}{q} \frac{\mathbf{R}_{\mathbf{c}} \times \mathbf{B}}{R_{c}^{2} B^{2}} \left(v_{\parallel}^{2} + \frac{1}{2} v_{\perp}^{2} \right)$$

Particles with sufficient $\mathbf{v}_{||}$ will follow the helical magnetic field around the torus

Particles with lower $\mathbf{v}_{||}$ are reflected as they encounter stronger *B* and therefore execute "banana" orbits as they precess around the torus B

Banana Orbits

Conclusions - single particle and gyro motion in plasmas

 Magnetic fields needed to confine hot collisionless fusion plasmas. ExB, gradB and curvature drifts

 Cross-field confinement structures solar plasmas, too

- Magnetic fields mediate collective behavior of plasmas, via drifts
- Plasmas can generate their own B fields!

• Work hard and soak it in. Have a good summer! 54