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• Motion of Single particles important to understand behavior of plasmas 
• How magnetic fields modify single particle motion 

• Gyromotion about a guiding center 
• Forces can cause guiding center drift 

• Some real life consequences:  
– Why do tokamaks have helical B fields? 

–  Why do astrophysical shocks need a magnetic field?

Key Points to Take Away

• NRL Plasma Formulary 
www.nrl.navy.mil/ppd/content/nrl-plasma-formulary

• Introduction to Plasma Physics and Controlled Fusion by F. Chen

References

http://www.nrl.navy.mil/ppd/content/nrl-plasma-formulary
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Single-particle motion is key intuition to understand many 
problems in plasma physics

Structure	of	solar	plasmas

Role	of	magnetic	fields	in	
collisionless	shocks

Magnetically-driven	Inertial-confinement	
fusion	in	Z-pinches

Plasma	confinement	for	MFE	in		
stellarators	and	tokamaks
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Ideas behind single-particle physics threads all the way through to 
the most modern analysis and simulation techniques 

[K. Germaschewski, WF, et al, JCP 2016]

• The Particle-in-Cell simulation 
technique 

Calculate particle
motion in E and B fields
[F = ma]

Sum over particles to calculate
current J and charge density ρ

Update E and B
fields on mesh
[Maxwell’s Equations]

• Idea allows plasma simulations that run on the world’s fastest supercomputers
• Some of you may use “gyrokinetic” simulations during your internship, which take 

advantage of single-particle results here to speed up calculations
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Ideas behind single-particle physics threads all the way through to 
the most modern analysis and simulation techniques 

[K. Germaschewski, WF, et al, JCP 2016]

• The Particle-in-Cell simulation 
technique 

Calculate particle
motion in E and B fields
[F = ma]

Update E and B
fields on mesh
Maxwell’s Equations

• Idea allows plasma simulations that run on the world’s fastest supercomputers
• Some of you may use “gyrokinetic” simulations during your internship, which take 

advantage of single-particle results here to speed up calculations

TODAY

Sum over particles to calculate
current J and charge density ρ
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Plasma Physics is the Basis for Fusion Research

• Sustained fusion reactions require enough particles (density) that 
are energetic enough (temperature) and collide often enough 
(confinement time).  

  
• The fusion triple product is the figure of merit:

T~100-200 million K  
n~2-3x1020 ions/m3 
τ ~1-2 s

D & T is a plasma at 
these temperatures
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The trick: use magnetic fields

Typical velocity of a 100 million K ion: 

Even with ~1020 ions/m3 , the ion would travel ~10 km 
before colliding with another  

Plasmas are effectively collisionless 
(a common theme) 

The ITER tokamak has Rmajor=6.2 m à ~40 m 
circumference

We can understand a lot about how fusion devices 
confine plasma by studying single particle motion.
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• A particle with charge (q) moving with velocity (v) in the presence 
of electric and magnetic fields will experience a force:

Charged Particles Feel The (Lorentz) Force

We know from Newton’s 
second law of motion that 
force causes acceleration:

A charged particle 
moving perpendicular to  
the magnetic field feels a force
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• Consider the motion of a particle in a constant, uniform B field

How Does a Charged Particle Move in a Magnetic Field?

y

x

+

Then

So we can write

Now let’s do the algebra
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y

x

+

Let’s break this into components:

Goal: Solve the Equations of Motion for a Charged 
Particle In A Magnetic Field

The ‘dot’ represents  

Particles move freely 
along the field line

Matching components: 
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Take Another Time Derivative & Substitute to Obtain 
Differential Equations For Each Spatial Coordinate

Rewriting, we get

These may remind you of the equations for a simple harmonic oscillator
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Solve the Differential Equations 

These differential equations can be solved using sines and cosines:

the magnitude of the initial 
velocity perpendicular to B

an arbitrary phase 
to match the initial 
velocity conditions  

account for positive or 
negative q 
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Integrating, we obtain

Larmor radius

Cyclotron frequency

• Charged particles undergo circular orbits about a guiding center  

The Result: Circular Motion About A Guiding Center 
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Let’s take                   and 

Gyromotion of a Charged Particle In A Magnetic Field

y

x

+

For a positively charged particle:

1. At             , 
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Let’s take                   and 

y

x

Gyromotion of a Charged Particle In A Magnetic Field

For a negatively charged particle:

1. At             , 
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Let’s take                   and 

y

x

Gyromotion of a Charged Particle In A Magnetic Field

For a negatively charged particle:

1. At             , 

2. At                    , -
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y

x

Gyromotion of Ions vs. Electrons

+

• Ions generally have a much larger Larmor radius than electrons

• The direction of gyromotion depends on the sign of the charge

-

In ITER, for a typical deuterium ion  
with Ti=10 keV and B=5 Tesla would have 

An electron with Te=10 keV and B=5 Tesla has 

 (60 times smaller)
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Magnetic Confinement Devices Should Be Much Larger 
Than the Larmor Radius

Image credit: http://iter.rma.ac.be/en/img/MagneticConfinement.jpg
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Magnetic structure of the solar corona

Solar	coronal	plasma	
Te	=	10	MK		(100	eV)	
B	=	100	G

Which	way	is	the	magnetic	field	running?	
Is	the	gradient	stronger	along	or	across	the	field?
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Magnetic structure of the solar corona

Solar	coronal	plasma	
Te	=	10	MK		(100	eV)	
B	=	100	G

Which	way	is	the	magnetic	field	running?	
Is	the	gradient	stronger	along	or	across	the	field?	

Follow	up:	Shouldn’t	heat	drain	off	the	field	lines?		
What	keeps	the	corona	hot?	[An	active	research	question!!]
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Magnetic Mirrors

Result:  
gyromotion + mirror force in the         direction

The Br ends up causing additional 

acceleration in the z direction: 

The magnetic moment is

mirror force 
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Magnetic Moment Is Conserved

The magnetic moment is a constant of motion

s is the coordinate 
along the field line

We can write this is  

Then

We also have 
conservation of energy:

this is 

m
dv||
dt

= �µ
dB

ds

μ	is	an	“adiabatic	invariant”	-	a	deeply	utilized	concept	for	magnetized	plasmas
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1. As the particle moves to stronger B,        must increase.

2. Since energy is conserved,       must decrease.

3. If B is strong enough,                 and the particle is reflected.  

More Insight Into Magnetic Mirrors

The particle is reflected when
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Magnetic Mirror Confinement In Action

Charged particles can be trapped 
by Earth’s magnetic field

Multicusp Confinement Devices

Early Fusion Experiments

Ex: Tandem Mirror Experiment 
(LLNL,1980’s) and other variants 
(Polywell devices) 

Particles with enough 
v|| can still escape
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Time-varying Electric and Magnetic Fields Can Be Used 
To Accelerate & Heat Particles

• A high frequency electro-magnetic field can be used to accelerate 
electrons or ions.  

y

x
-
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y

x
-

• A high frequency electro-magnetic field can be used to accelerate 
electrons or ions.  

• Particle gains energy as the applied electric field component oscillates at 
the cyclotron frequency (“in-phase” with the gyro-orbit).

Cyclotron frequency

Time-varying Electric and Magnetic Fields Can Be Used 
To Accelerate & Heat Particles

The fluctuating    
accelerates the electron in 
the +x direction 
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y

x
-

• A high frequency electro-magnetic field can be used to accelerate 
electrons or ions.  

• Particle gains energy as the applied electric field component oscillates at 
the cyclotron frequency (“in-phase” with the gyro-orbit).

Cyclotron frequency

Time-varying Electric and Magnetic Fields Can Be Used 
To Accelerate & Heat Particles

Now      accelerates the 
electron in the -x direction 
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y

x
-

• A high frequency electro-magnetic field can be used to accelerate 
electrons or ions.  

• Particle gains energy as the applied electric field component oscillates at 
the cyclotron frequency (“in-phase” with the gyro-orbit).

Cyclotron frequency

Time-varying Electric and Magnetic Fields Can Be Used 
To Accelerate & Heat Particles
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y

x
-

• A high frequency electro-magnetic field can be used to accelerate 
electrons or ions.  

• Particle gains energy as the applied electric field component oscillates at 
the cyclotron frequency (“in-phase” with the gyro-orbit).

Ex: For an electron, what B corresponds to 
2.45 Ghz (microwave oven frequency)?

The Cyclotron Frequency is Important for  
Cyclotron Resonance Heating

Cyclotron frequency

Remember VTF?
This is how we initiated our plasma!
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Other Practical Applications: EM Emission from 
Charged Particle Acceleration

• Electron cyclotron emission (measure Te profiles)  
Produced by acceleration of gyrating charged particle  
EM radiation emitted at discrete frequencies: 

-

B

Detected radiated power is proportional to Te:

+
-

• Bremsstrahlung emission 
Produced by deceleration of deflected charged particle

Radiated power depends on ne, Te, charge state Zeff 

(can be used to measure Zeff) 
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y

x

+

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field
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y

x
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Accelerates due to E 

Faster velocity increases vxB 

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field
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y

x

+
Faster velocity increases vxB 

Decelerates 

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field

Accelerates due to E 
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y

x

+

Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field

Faster velocity increases vxB 

Decelerates 

Accelerates due to E 
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Next Simplest Case to Analyze: Constant, Uniform 
Electric Field Perpendicular to Magnetic Field

y

x

+

Ion guiding center drifts in the direction 



!40

Guiding Center Drift Due to E x B

y

x
-

The ExB drift can be written more generally as

• ExB drift is independent of charge and mass 
   
• Both electrons and ions move together 

Electron guiding center also drifts in the direction 

Preview for MHD lecture: Magnetic field also moves with plasma, via 
Faraday’s law.  Plasma and field can be thought of being “frozen together”
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Digression: How magnetic fields mediate collisionless shocks in astrophysical plasmas

Collisionless SNR shocks shown to 
be the sites of cosmic ray 
acceleration. [Ackerman Science 
2013]

Shocks occur where supersonic flows interact.  Conversion of 
kinetic energy to heat 

In gas, inter-particle collisions mediate the shock 

In plasma, collisionless shocks have shock width << mean-free-
path. 

Collective electromagnetic fields are required to mediate shock in 
collisionless plasmas 

Proposed mechanisms: 
• Pile-up of pre-existing field (“magnetized shocks” … shortly) 
• Self-generation of a turbulent magnetic field near shock by 

Weibel instability * 

SNR1006

gas

plasma



!42

Magnetic fields mediate collisionless shocks in astrophysical plasmas

Shocks occur where supersonic flows interact.  Conversion of 
kinetic energy to heat 

In gas, inter-particle collisions mediate the shock 

In plasma, collisionless shocks have shock width << mean-free-
path. 

Collective electromagnetic fields are required to mediate shock in 
collisionless plasmas 

Proposed mechanisms: 
• Pile-up of pre-existing field (“magnetized shocks” … shortly) 
• Self-generation of a turbulent magnetic field near shock by 

Weibel instability * 

SNR1006 density
propagating shock front heated, shocked 

plasma

vExB

E
B B B

gas

plasma
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Magnetic fields mediate collisionless shocks in astrophysical plasmas

Shocks occur where supersonic flows interact.  Conversion of 
kinetic energy to heat 

In gas, inter-particle collisions mediate the shock 

In plasma, collisionless shocks have shock width << mean-free-
path. 

Collective electromagnetic fields are required to mediate shock in 
collisionless plasmas 

Proposed mechanisms: 
• Pile-up of pre-existing field (“magnetized shocks” … shortly) 
• Self-generation of a turbulent magnetic field near shock by 

Weibel instability * 

SNR1006

gas

plasma

The Weibel field-generation mechanism was verified by laboratory experiments
[Fox, et al, Phys. Rev Lett (2013);  Huntington et al, Nat. Phys 2015]

proton radiograph

two expanding
 plasmas
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Other Forces Can Also Cause Guiding Center Drift

• Any force perpendicular to B can cause particles to drift

Drift due to force:

Examples of forces: gravity

centrifugal

Rc

• Bend the magnetic field into a donut shape  
• No end losses because the field lines go 

around and close on themselves  
• BUT a particle following a toroidal magnetic 

field would experience Fcf 
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A particle moving along a curved field 
line will drift up or down, depending on 
the sign of the charge

The outward centrifugal force causes curvature drift

z

Btoroidal

Rc

Curvature Drift Due to Bending Field Lines
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Spatially Varying Magnetic Field Strength 
Also Causes Drift
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+

• The gyro-radius will be larger where the field is weaker and 
smaller where the field is stronger

Spatially Varying Magnetic Field Strength 
Also Causes Drift
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-
+

• The gyro-radius will be larger where the field is weaker and 
smaller where the field is stronger 

• The resulting drift velocity is described by:

Spatially Varying Magnetic Field Strength 
Also Causes Drift
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Application: What Happens To Charged 
Particles In A Purely Toroidal Magnetic Field?

Ion  
drift

+
++

+

Electron 
drift-

-
-

-

Btoroidal

• Charged particles in a curved magnetic field will experience 
both ∇B and curvature drift: these effects add   

z

ɸ
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Charged Particles Will Drift Outward 

Ion  
drift

Electron 
drift

E

+
++

-
-

-

+

-

Btoroidal

• This means that no matter what, particles in a torus with a purely 
toroidal field will drift radially out and hit the walls.  

• Charged particles in a curved magnetic field will experience 
both ∇B and curvature drift   

z

ɸ
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Tokamak Solution: Add Poloidal Magnetic Field

Iplasma

Bpoloidal

Toroidal: long way around 
Poloidal: short way around 
1. Use external coils to apply a toroidal magnetic field 
2. Drive toroidal current in the plasma to generate a poloidal magnetic field

Btoroidal

z

ɸ

• The resulting helical magnetic field is much better at confining charged particles. 
• The challenge: how to drive current in plasma in steady state while keeping the 

plasma stable and free of disruptions? 
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z

ɸ

R

There Are Two Main Classes of Particle Orbits In Tokamaks

Passing

Bp

Bt

Particles with sufficient v||will follow the 
helical magnetic field around the torus

z

ɸ

R

Trapped

Bp

Bt

Particles with lower v|| are reflected 
as they encounter stronger B and 
therefore execute “banana” orbits 
as they precess around the torus B
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Image credit: euro-fusion.org

Banana Orbits

Particles that don’t have enough v|| 

are reflected by the mirror force at 
the high field side of the tokamak  

Trapped particles won’t hit the wall if the 
banana orbit width Δr is small enough
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Conclusions - single particle and gyro motion in plasmas

• Work hard and soak it in.  Have a good summer! 

• Magnetic fields mediate collective 
behavior of plasmas, via drifts 

• Plasmas can generate their own B 
fields!

• Cross-field confinement 
structures solar plasmas, too 

• Magnetic fields needed to confine hot 
collisionless fusion plasmas.  ExB, 
gradB and curvature drifts


