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Fig. 1: Results from two fluid 
modelling of Ganymede’s 

magnetosphere, performed in Gkeyll 
by Wang et al3. 
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 We have developed a perpendicular Poisson solver
which can be used to simulate a thin shell 
ionosphere. Full model will include conductivity 
tensor based off of parallel, Pederson, and Hall 
conductivities2.

 Goal is to couple ionosphere model to multi-fluid 
solvers in Gkeyll to perform global magnetosphere 
simulations. Previous Gkeyll simulations have been on 
smaller bodies without ionospheres3.

 Generalized coordinate approach allows for complex 
logical to physical mappings to avoid polar singularity. 
Finite volume method is used for its conservative 
characteristics. 

 Global magnetospheric simulations are essential to 
understanding the mechanisms behind formation of 
geomagnetic storms following large CME’s which are 
incident on the earth.

• Beginning with the standard Poisson's equation, we integrate over the area of a cell with 
potential φ, cell normal ො𝑛, and source 𝑠:

• We then assume the source is input as an average and estimate the average value of the 
gradients at the cell walls. Note the maps used here have quadrilateral cells.

• Where 𝑙𝑘 is the 𝑘th cell wall. Correctly calculating the lengths involved in taking a derivative 
requires use of the metric tensor, the Voss-Weyl formula can be used to represent the gradient. 
The Einstein summation convention is used.

• Here 𝑔 represents the metric determinant. This is then placed within the sum form of the 
integrated Poisson equation. The gradient is covariant as with the cell wall normal, so the dot 
product requires raising the indices of the gradient with the inverse metric.  

• 𝑔𝑖𝑗 refers to the inverse metric, and ∆𝑥𝑐 and ∆𝑦𝑐 refer to the computational grid steps. The 𝑔(𝑘)
are evaluated at the cell walls, however on the source side it is evaluated at the cell center. The 
finite differencing used to approximate the gradient at the cell edge is a central difference nine 
point stencil, which calculates the wall parallel derivative by averaging the four surrounding cells 
at each vertex of the wall. The term contributed by the right side wall ( xc = xc,center + 0.5dxc and yc 

= yc,center) is
1:

• Certain problems require special treatment: When all boundary conditions are periodic, each cell 
feeds into another, so the integral of the Laplacian of φ over the whole domain must be zero. 
Therefore, when treating the source its integral over the domain is made to be zero.

• Secondly, when there are no Dirichlet conditions present, the solution is not unique due to an 
unknown additive constant. This is handled by setting the upper right corner of the 
computational grid to 0 for all such situations.

• The code is written in a combination of Lua, C, and C++, with the Eigen library being used to 
factorize the stiffness matrix/ solve for the potential. Metric derivative terms are calculated 
using the SciLua automatic differentiation library.

Fig. 2: Diagram of 2D circular 
mapping obtained from Calhoun 

et al.

Fig. 3: 3D spherical mapping obtained 
from Calhoun et al.

Fig. 5: Color coded illustration of periodic 
boundary condition communication on 

nonsingular sphere map. 

 Circular and spherical mappings were obtained from Calhoun et al1.

 The grids used are logically rectangular, in the 2D case being 
square, and in the spherical case being a 2:1 rectangle.

 The grids shown here are 16 by 16 and 32 by 16. The change from 
disk to sphere simply involves shifting cells radially outward and 
adding a z coordinate.

 Corner cells on the spherical map become nearly but not 
totally triangular. However certain areas of the mapping 
exhibited singularities in the metric, mainly at the equator 
and exact poles.

 To solve this the number of cells is chosen carefully and the 
gradients are evaluated 1e-5Δxc or 1e-5Δyc within the cell 
walls.

 The exact spherical mapping method from Calhoun et 
al is not used in this solver. We found that elliptic 
solutions possess some error near the poles which 
lowered convergence. So, a modified redistribution of 
cells toward the edges of the disk is used prior to z 
coordinate assignment.

 The periodic boundary conditions require special 
treatment, where the y bound edges communicate 
with themselves instead of opposite sides1. Corners 
are handled without special treatment.

 Convergence tests were carried out on numerous skewed grids, shown here are results from testing 
on the disk and the sphere, expected convergence for this method is 2nd order. 

 This test uses Dirichlet boundary conditions set to 0 at r 
= 1. The test source and solution are given below. The 
source is not averaged over the cell upon input, but 
rather evaluated at the cell centers for simplicity.

 The error displayed is weighted by the physical size of the cell, therefore it most nearly represents 
integrated error over the cell area.

Tbl. 1: Convergence study for 
circular disk test. E is the average 

absolute error and p is the 
convergence order. 

Fig. 7: Area weighted absolute 
error. Most large error originates 

from the highly skewed grid 
points.

Fig. 6: Calculated solution from the 
given test source. 

Tbl. 3: Convergence 
study for second 

spherical test. 

Fig. 12: Area weighted 
absolute error. 

Tbl. 2: Convergence 
study for first spherical 

test. 

Fig. 10: Area weighted 
absolute error. 

Fig. 9: Calculated solution from the given test source 
(computational space 128x64 grid). 

Fig. 11: Calculated solution from the 
given test source. 

 This test demonstrates the more ideal behavior 
expected when there is no φ dependence. Two of 
these spherical test plots are displayed in 
computational space to illustrate the solution 
everywhere on the sphere.

 The special periodic boundary conditions were used for the first spherical test. Currently there is some 
sensitivity to strongly φ dependent solutions, this is likely due to a preliminary implementation of the 
arctangent in our mapping to emulate “atan2” while it is being added to the autodifferentiation library.

 Expectations for the 2D and 3D solvers have been reached with 2nd order expected convergence 
being met on average. The convergence issue present in the first spherical test case is expected to 
resolve with correction of the “atan2” substitution. Further work to make this an Ionospheric model 
requires the conductivity tensor.

 The governing equation of the thin shell model assumes that current flows along field lines to the 
ionosphere where it spreads out across the surface, according to                               . Using Ohm’s law 
the equation dictating Ionospheric potential is then: and similar conversions to 
earlier must be made to format the conductivity for representation in the computational space.

 Thin shell model uses 3 conductivities: the parallel, Pederson, and Hall conductivities. They describe 
the directions parallel to the magnetic field, perpendicular to the magnetic field and parallel to the 
electric field, and perpendicular to both fields2. Parallel conductivity is plasma conductivity, Pederson 
conductivity is based off mobility 𝜇 across a magnetic field, and Hall conductivity is heavily dictated by 
E x B drift. Combined with the geomagnetic dip angle they may represent a 2D conductivity tensor2.
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 Overall error is well distributed with no large singularities or particular problem areas which 
would cause significant trouble in electric field calculation.

Fig. 8: Calculated solution from the given 
test source (physical space, 256x128 grid). 
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