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Model	in	early	stages	(lots	still	to	do):
• Larger	training	shot	list	(model	currently	trains	
on	~600	shots– lots	more	data	available)
• More	0D	data	(power	and	torque	from	each	
beam	– potentially	valuable	influence	on	local	
spatial	scales)
• Comparing	profile	evolution	predictions	for	
data-driven	and	physics-based	models
• CNN-RNN	hybrid	- learn	more	abstract	spatial	
patterns
• Parameterize	input data	– reduce	
computational	expense
• Kinetically-constrained	plasma	profiles
• Train	model	on	plasma	transport	codes	(e.g.	
TRANSP)

Implementing	RNN	in	NERSC	
Supercomputers

• Awarded	NERSC	exploratory	resources	to	
upscale	project

• Implementing	RNN	model	in	Cori	and	Edison	
Supercomputers
• Necessary:	increase	accuracy	àincrease	
computational	power

• Inspired	by	biological	neural	networks
• Interdisciplinary	applications	(including	

fusion,	particularly	disruption	predictions)
• Supervised	learning	problem	(target	profiles	

known)

• Why?:	Rudimentary	NN	previously	developed	doesn’t	explicitly	use	previous	time-steps	and	predictions	
as	model	inputs	(doesn’t	have	“memory”)	– but	plasma	evolution	has	spatial	+	temporal dependence

• Model	goal:	predict	physically	significant	spatio-temporal	
changes	in	profiles	with	knowledge	of	previous	plasma	
state	(via	profiles)	and	current	0D	inputs

• Examples	from	preliminary	results	show	model	
predicting	onset	of	ion	profile	“hollowing”

• Fusion	goal:	Make	nuclear	fusion	a	commercially	
feasible	energy	source

• Major	challenge:	plasma	stability
• if	we	can	predict	plasma	stability	àmanipulate	
plasma	to	avoid	instabilities/dangerous	modes

• Tokamak	plasma	profiles	are	inputs	to	plasma	
stability	codes
• Can	AI	help	us	predict	plasma	[profile]	evolution?
• Plasma	evolution	knowledge	à predict	potential	

instability	onsets

• 3.)	Learning	Process:	Minimize	loss(𝑦"# )	by	updating	
weights	and	biases	(𝜃)	using	SGD	algorithm;		4.)	
minimization	optimized	by	Adam	optimizer

• 2.)	A	mean-absolute	difference	loss	[error]	
function	is	defined	for	loss	minimization:
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• Each	“neuron”	is	its	own	neural	network	–
node	learns	non-linear	combination	of	values	
to	determine	gates’	operation	for	ML	task

• 1.a.)	Weights	(W)	and	biases	(b)	for	the	model’s	
raw	neuron	activations	(Ai+1)	are	defined	as:

Rudimentary	neural	
network

Relevant	information
• Recurrent	Neural	Network	Model:
• LSTM	Units:	200;	LSTM	Cells	[layers]:	4
• Limited	by	comp.	power

• 588	[DIII-D]	shots
• 50-ms	time-slices
• Built	using	Google’s	TensorFlow API

Loss:	measure	
of	”error”

RNN	unrolled	in	time	- how	RNN	uses	pervious	time-slices	for	
prediction
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à Forget	gate
à Input	gate
à Output	gate

• 1.b.)	Raw	neuron	acts.	are	linearly	activated:	

• Each	node	(LSTM	unit)	described	by:

Model	Inputs:
• Previous	150-ms	of	ne,	ni,	Te,	Ti,	Rot.	
profiles	(zipfit - OMFITmdsplus)

• 0D	time-traces	(previous	and	
concurrent)
•NBI	power/torque,	gas	A/B	flowrates,	
ECH	power

Model	Outputs:
• Future	(unseen)	150-ms	of	plasma	
profiles
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Tensors	are	
extended	by	
one	rank	for	
multi-layer	NN

yi is	the	sum	of	the	target	values	vector	and	
𝑦"# is	the	sum	of	the	predicted	values	vector

ReLU(Ai+1
j ) = max(0, Ai+1

j ) = x

+

Differences

:	prediction
:	target

Another	example	of	ion-hollowing	onset	prediction
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𝛾": learning-rate	schedule;𝜃": updated	weights	and	biases

𝑦'":	parameterized	
by	𝑊 and	𝑏


