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Fundamental questions of high-field science and astrophysics 
-  How does matter behave in extreme fields? 
-  What is the physics of stellar atmospheres, relativistic 

astrophysical jets, supernovae, etc? 
-  Can we observe the effects of radiation reaction and nonlinear 

QED in plasma dynamics?  
-  Can we generate electron-positron pairs from the Dirac Sea in 

vacuum by intense photon interactions? 

Applications 
- Can we shrink kilometer-scale accelerator/synchrotron facilities to 
fit on a laboratory tabletop? 
- Ultrafast sources of intense light and high-energy particles 

Ultra-intense laser light (Raman/Brillouin amplification in plasmas) 
Attosecond (10-18 s) x-ray pulses for time-resolved studies  
High-energy (GeV) electron beams (Laser Wakefield Acceleration) 
High-energy  ion/proton beams (Solid foils) 

- Laser Fusion 

High-field science on a tabletop	





Lasers are the most intense sources of electromagnetic radiation 
available in laboratory conditions for high-field science 
experiments. 
 
 
 
 
 

Laser fields	



I = 1020 W/cm2 è E = 3×1013 V/m, B = 105 T 
E-field is 105 times higher than in conventional RF accelerators	


 

- SI units of I are W/m2, but W/cm2 is used in laser science. 

Power 
Irradiance or intensity 

- This laser light converts cold target matter (gas, liquid, solid) 
almost instantaneously into plasma and drives huge currents. 

- Intensity defines the fields and e/m force. 



NIF: 1.8 MJ (192 beams at 
351nm), ns, ~mm   
P ~ 500TW è I < 1016 W/cm2 

Image:LLNL 

Princeton: 500 mJ (800nm), 
25 fs, few µm spot size  
 P ~ 20 TW è  I >1019 W/cm2 

- Lasers of similar powers may aim at very different experiments: 

Rep.rate – one shot per day 

Rep.rate – 10 Hz 

Laser diode 
chip ≈ less 
than 1 mm  



Ultrafast light sources	


Image courtesy Matthew Edwards 

ps =10-12 s 

fs =10-15 s 

as =10-18 s 

The shortest optical pulse 
generated is single-cycle. 
(tiny energy, 
yet to be demonstrated on 
a terawatt scale) 

Image: MPQ 



Ultrafast light sources	


Image courtesy Matthew Edwards 

Image: D. Umstadter, J. Phys. D: 
Appl. Phys. 36, R151, 2003 

Peak 
electric 
field (E) at 
the laser 
focus 

Before CPA 

CPA 



High power from high energy 
– Flash-lamp-pumped glass-type, wavelength around 1µm 
(or 2w, 3w) 
– Energies 10 - 1000 Joules 
– Durations > 500 fs 
– Titan (LLNL), Trident (LANL), MTW (LLE) and others 
– Repetition rate < few shots per day 
 
High power from short pulse durations 
– Laser-pumped Ti:Sapphire, wavelength = 800 nm 
- OPCPA, broadband 650-1100nm 
– Energies  0.1 – 100 Joules 
– Durations ~25 – 200 fs 
– Hercules (UMichigan), Scarlet (OSU), Callisto (LLNL), 
MTW-OPAL (LLE), Princeton, etc 
– Repetition rate - up to 10 Hz 
 

High-Power Lasers	





Chirped pulse amplification	


- Invented by Gerard Mourou and Donna Strickland in 1985 
- Way of increasing intensities beyond damage thresholds 
amplifying longer pulses (100 ps – 1 ns) and compressing 
them to <1ps after amplification. 

Figure: Paul Gibbon "Short Pulse Laser Interactions with Matter”, Lectures 



Chirped pulse amplification	



Oscillator Stretcher Amplifier Compres
sor 

1. Oscillator: generates fs, broadband, low-energy 
pulse 
2. Stretcher: converts fs pulse to >100 ps. Creates 
different optical paths for each wavelength of the 
spectrum. Produces a “chirped” pulse.  
3. Amplifier: increase the pulse energy by a factor 
of 107–1010 

4. Compressor: performs optical inverse of the 
stretcher to deliver an amplified fs pulse. The result 
is a high-intensity ultra-short pulse free of chirp.  

- Invented by Gerard Mourou and Donna Strickland in 1985 
- Way of increasing intensities beyond damage thresholds 
amplifying longer pulses (100 ps – 1 ns) and compressing 
them to <1ps after amplification. 



Chirped pulse amplification	



Image from Paul Gibbon "Short Pulse Laser Interactions with Matter”, Lectures 

Typical femtosecond TW laser system 



Single electron in a plane wave	


Assumptions: 
- Electron is classical (no spin) 
- Neglect back reaction force of electron’s radiation 
- Electron and wave are in vacuum, there are no other charges, potential electric 
field = 0 

Relativistic 
momentum 

Electron  
velocity Electric  

field 
Magnetic  
field 

Charge 

Speed of light 

Lorentz factor 

Relativistic mass - the mass of an electron in motion  
Rest mass 



Sinusoidal plane wave is propagating along x-axis, 
its wavefronts are parallel planes. 

Plane electromagnetic wave	



x 
It is convenient to use the field vector potential: 

x 

A plane wave is useful, because: 
-  Any function, which is smooth and rapidly decreasing in infinity, can be represented 
as a superposition of plane waves - Fourier transform in time and space. 
 
-   If a wavefront curvature radius of an arbitrary wave >> than linear dimensions of a 
given volume, then inside this volume the wave is almost plane.  E.g. atomic radius is 
about 0.1 nm << wavelength of visible light (400–700 nm). 



Single electron in a plane wave.	


Low field - Non-relativistic motion	



px 

py 

pz 

p 

Transverse motion Longitudinal drift motion 

k 

There is no drift in the direction 
of laser propagation 

Electron oscillates at the laser frequency in 
the direction parallel to the E field vector.  

The amplitude of electron oscillation is less 
than the light wavelength. 



Single electron in a plane wave.	


High field - Relativistic motion	



px 

py 

pz 

p 

Transverse motion Longitudinal drift motion 

This drift motion originates from f = const, px0 =const, E0=const 
are the initial electron momenta and 
energy before the interaction with a wave. 

k 



Single electron in a plane wave.	


High field - Relativistic motion	



Transverse motion Longitudinal drift motion 

Electron’s coordinates can be found in the parametric form: 

p ∼ A  px ∼ A2  
For small A, p >> px. For large A, px >> p . 

When the field is vanishing 
(A=0), the electron momenta 
and energy return to their initial 
values (f, px0, E0).  

Note: 



Special case 	


Electron at rest before the wave arrival: f=0, px0=0 

At a = 1, electron 
kinetic energy 

2

2mc
=

a is a dimensionless figure of merit of 
the laser vector potential  

Transverse motion Longitudinal drift motion 



Relativistic intensity of light	





Special case 	


Electron at rest before the wave arrival: f=0, px0=0  

becomes close to c 
with increasing a 

Transverse motion Longitudinal drift motion 



Special case 	


Electron at rest before the wave arrival: f=0, px0=0  

The amplitude of electron oscillation can be much higher than 
the laser wavelength. 

Transverse motion Longitudinal drift motion 

If                            , then  



Single electron in a plane wave	



Image: D. Umstadter, J. Phys. D: 
Appl. Phys. 36, R151, 2003 

(a) Non-relativistic case: the wave 
amplitude is small, only the E-field acts on 
the electron, electron oscillates in 
the direction of the E field at the light’s 
frequency, velocity << c, displacement 
amplitude < λ.  
There is no displacement along the wave 
propagation direction.  

(b) Relativistic case: the wave amplitude 
is very large, B-field becomes important, 
the combined action of the E and B-fields 
pushes the electron forward. Transverse 
velocity is limited by c/√2, longitudinal  
velocity is close to c. 

Displacement amplitude > λ. 
Thus, the plane wave approximation may fail for 
finite-size beams. 



Time in laboratory frame, light periods 

Plot the solution of the equation of motion for an electron, which was at 
rest before the laser pulse arrival. 

2 3 4 

-1 

1 

Ey / Erel 

Single electron in a laser pulse	





Time in laboratory frame, light periods 

a0=0.0001 

(Vx /c)×108 

Vy 

(Vy /c )×104 

Vx 

Electric field 
seen by 
electron 

Non-Relativistic 
case 

2 3 4 

Single electron in a laser pulse	





Time in laboratory frame, light periods 

a0=1.0 

Vy 

Vx 

Electric field 
seen by 
electron 

Onset of 
Relativistic 
effects 

Electric field 

(Vx /c)×1 

(Vy /c )×1 

2 3 4 

Single electron in a laser pulse	





Vz scaled by 106 

Time in laboratory frame, light periods 

a0=6.0 

Electric field 
seen by 
electron 

Relativistic 

Electric field 

(Vx /c)×1 (Vy /c )×1 

Vy 

Vx 

5 10 15 

Single electron in a laser pulse	





Vz scaled by 106 

Vy 

Time in laboratory frame, light periods 

a0=1.0 

a0=0.0001 

a0=6.0 Relativistic 

Non-Relativistic 

Single electron 
in a laser pulse	





Time in laboratory frame, light periods 

X coordinate of an electron 

a0=6.0 Relativistic 
case (Vx /c)×1 (Vy /c )×1 

5 10 15 

Single electron in a laser pulse	





What if an electron sits in dense plasmas?	



J. Mikhailova et al, PRL, 109, 245005 (2012) 

Figure-8 
trajectory in 
laboratory frame 



Relativistic Laser - Plasma Interactions	



•  Cold matter — solid, liquid or gas — is rapidly ionized when 
subjected to strong laser fields, far exceeding binding fields 
of atoms. 

•  Electrons released are immediately caught in the laser field, 
oscillate and drift - field dominated physics. 

•  Capability for laser-based particle acceleration (GeV), and 
short-wavelength (x-ray) radiation sources. 	
  

	
  

	
  laser	
  intensity	
  of	
  IL	
  >	
  Ia	
  will	
  guarantee	
  
ioniza.on	
  for	
  any	
  target	
  material,	
  though	
  in	
  
fact	
  this	
  can	
  occur	
  well	
  below	
  this	
  threshold	
  
value	
  via	
  other	
  ioniza9on	
  mechanisms	
  



Plasma classification: Ideal and Non-ideal	



Paul	
  Gibbon	
  "Short	
  Pulse	
  Laser	
  Interac9ons	
  with	
  MaAer”,	
  Lectures	
  



Underdense and Overdense	



Paul	
  Gibbon	
  "Short	
  Pulse	
  Laser	
  Interac9ons	
  with	
  MaAer”,	
  Lectures	
  



Critical plasma density 	


Normalized target density 

=1	
  

Paul	
  Gibbon	
  "Short	
  Pulse	
  Laser	
  Interac9ons	
  with	
  MaAer”,	
  Lectures	
  



XUV filter 

XU
V 

Solid 
target 

Off-axis 
parabola 

e-­‐	
  

10 cm 

~50 nm 

High-Intensity Laser-Solid Interaction	



•  High	
  intensity	
  laser	
  pulse	
  
hiHng	
  solid	
  target	
  creates	
  a	
  
dense	
  plasma	
  and	
  accelerates	
  
electrons	
  at	
  the	
  surface	
  to	
  
rela9vis9c	
  speeds.	
  	
  

•  Rela9vis9c	
  electron	
  mo9on	
  is	
  
highly-­‐nonlinear,	
  allowing	
  the	
  
genera9on	
  of	
  high	
  harmonics	
  
of	
  the	
  incident	
  laser.	
  	
  

•  This	
  emission	
  can,	
  according	
  to	
  
theory,	
  be	
  phase-­‐locked	
  to	
  
produce	
  aAosecond	
  x-­‐ray	
  
pulses.	
  

Synchrotron-­‐
like	
  trajectory	
  
of	
  electrons	
  



Plasma 
(Electron Density) 

Vacuum 

M
ore Vacuum

 

Plasma Density 
Gradient 

Incident Laser 

1 um 

Image courtesy Matthew Edwards 



Reflected Laser 

Accelerated 
Electrons 

High Frequency 
(Attosecond) Pulses 

Image courtesy Matthew Edwards 



Filter out low 
frequencies 

Attosecond Pulse 

Image courtesy Matthew Edwards 



Ultrafast light sources	





X-­‐ray	
  Free	
  Electron	
  Lasers	
  
•  Capabili9es	
  (LCLS)	
  

–  ~50	
  fs	
  (pulse	
  dura9on)	
  
–  40	
  GW	
  (peak	
  power)	
  
–  0.12	
  –	
  22	
  nm	
  (wavelength)	
  

•  Note	
  that	
  in	
  principle	
  FELs	
  can	
  be	
  used	
  for	
  
infrared	
  through	
  x-­‐ray	
  wavelengths.	
  

–  1018	
  W/cm2	
  at	
  1	
  nm	
  wavelength	
  

•  Major	
  Facili9es	
  
–  LCLS	
  –	
  SLAC	
  Na9onal	
  Accelerator	
  

Laboratory	
  
–  FLASH	
  –	
  DESY	
  (Hamburg)	
  
–  European	
  XFEL	
  –	
  DESY	
  (Hamburg)	
  
–  SACLA	
  –	
  RIKEN	
  (Japan)	
  

38	
  

SLAC	
  

European	
  XFEL	
  



Development of compact sources of 
intense ultrafast x-rays 

An attosecond is a  
billionth of a billionth 
of a second - 10−18 s.	



Age	
  of	
  the	
  
Universe	
  is	
  of	
  	
  
the	
  order	
  of	
  	
  
1017	
  s	
  

Human	
  life	
  is	
  of	
  the	
  
order	
  of	
  109	
  s	
  

The time scale	



Image:	
  Ferenc	
  Krausz,	
  MPQ	
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