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Introduction

In Reiman, Radhakrishnan [1], and previously in Reiman [2], an analytical
calculation of the Pfirsch-Schluter current in and near a small magnetic
island showed a logarithmic singularity at the X-line for non-symmetric
geometries, which arises due to non-constant pressure near the separatrix.
This project extends this work to a tokamak divertor. In large-scale fusion
experiments, the ratio �k/�? can become very large, which leads to
numerical errors corrupting perpendicular transport [3]. Here, we

Obtain a numerical solution of heat di↵usion near the divertor separatrix.

Calculate the corresponding pressure-driven current.

Numerical Method

We implement the symmetric, finite di↵erence scheme in Gunter, et al [3], to
solve the steady state, heat di↵usion equation r · q = Q for power sources
Q, and where q is given by

q = [�kb̂b̂ + �?(I� b̂b̂)] ·rT (1)

Magnetic Field We run a current through two adjacent wires and sum the
fields, which go like 1/r1 + 1/r2.
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temperature. Then we iteratively solve a nonlinear equation, taking
�pol/�? / B2
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5/2. We increase the coe�cient to 106.

Symmetric Scheme This discretized formulation, shown below, maintains the
self-adjointness of the operator r ·rk. The temperature gradient is then8
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With the field and di↵usivities defined on the half-grid (refer to figure 1a),
we use the expression for r · qk

��
i ,j
presented in [3] and get a 9-diagonal

matrix of coe�cients for Tnum = (T1, ...,TN

), where N = N

x

N

y

. We
utilize symmetry about x = 0, setting T = 0 at the boundary on all other
sides of the grid.
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Figure 1 - Diagram of Symmetric Scheme

a) Diagram of grid structure [3]. T is given on the grid points, while the magnetic field and di↵usivities are
specified on the half-grid. ↵ is an Auerbach-Boozer coordinate [4].

b) Scaling of error, given by err =
��
Tnum(0, 0)� Tanal(0, 0)

��/
��
Tanal(0, 0)� Tanal(0.5, 0)

�� [3], for
manufactured solution of T (r) = 1� r

3, � = 109, and circular magnetic field centered at (i) x0 = y0 = 0
and (ii) x0 = y0 = �0.5 .

Auerbach-Boozer Coordinates

In order to calculate the current in the plasma, we interpolate our solution
for pressure onto an Auerbach-Boozer grid [4]. The magnetic surfaces
(⇢/a)2 = cos(2↵)±

p
k

2 � sin(2↵) solve the equation
�
⇢/a

�2 � 2
�
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�2
cos(2↵) + 1 = k

2
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The separatrix surface corresponds to magnetic flux surface label k = 1,
and (3) becomes (⇢/a)2 = 2 cos(2↵).

Inside the plasma boundary, when k < 1, ↵ is constrained by
sin2(2↵)  k

2.

In a similar treatment to that of the current calculation inside a small
magnetic island [1], [2], we introduce a new angle ⌘ mapped from ↵ by
the relation sin(⌘) = sin(2↵)/k .

Finally, we relate back to Cartesian coordinates with

x(k , ⌘) = �⇢(k , ⌘) sin↵(k , ⌘), y(k , ⌘) = ⇢(k , ⌘) cos↵(k , ⌘) (4)
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Figure 2 - Solution of Nonlinear Di↵usion Equation

a) Diagram of Auerbach-Boozer coordinate system (k ,↵) [4]. At the divertor separatrix, �⇡/2  ↵  ⇡/2,
and ↵ changes rapidly as it approaches the X-point.

b) Convergence of heat di↵usion with di↵usivity �pol/�? = 106B2
pol

T

5/2/max(B2
pol

T

5/2). As �pol/�?
increases, the converged solution better aligns with the magnetic surfaces.

Equilibrium Current Calculation

The variation of pressure on flux surfaces in the region near the divertor
separatrix leads to a nonzero B ·rp at the X-line, and a large Pfirsch-
Schluter current near the X-line. [1], [2]

Using the field configuration B = B0R0r� + B
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where r(1/B2) = 2x̂/(R0B
2
0).

Consider magnetic di↵erential equation B ·r� = f , where

f (k , ⌘) := r · j? (6)

Using the chain rule,

B ·r⌘
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@⌘
+ B ·rk
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@k
= f (k , ⌘) (7)
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obtain the solution
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Figure 3 - Temperature and Pressure-Driven Current Plots

a) T (y) for fixed x = 0
b) T (x) for fixed y = 1.125 (upper wire where power is deposited)
c) �(k) for fixed ⌘ = ⇡/2
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