MHD Generator Concept

- Energy is extracted in the form of a Hall current generated via the motion of the plasma torch through an externally applied B-field.
- No moving parts
- Can augment existing fossil fuel plants to increase fuel efficiency
- End goal of this project: utilize schlieren imaging diagnostic to obtain radial density profile of an MHD generator’s plasma jet

The Schlieren System

- Two-color schlieren allows evaluation of electron (e), ion (+), and neutral (n) refractivities \((N = n_1 + n_2 + n_n)\) separately.
- \(N_{el} = N_e + N_i + N_n\)
- \(N_{el} \propto \lambda n_1\)
- \(N_{el} \propto \alpha_{el}(\lambda) n_1\)
- Blue \(\lambda = 450\) nm at the resonant frequency for ions and/or neutrals
- Near-infrared \(\lambda = 830\) nm to image the electrons
- Z-type 2-mirror system
- No coma or chromatic aberrations
- Cost effective

System Diagnostics and Sensitivity Analysis

- Image of target card used to evaluate spatial resolution. Setup can distinguish at least 6.8 lp/mm, or lines that relief-cuts in high-Z PFC material are 147\(\mu m\) apart.
- Index of refraction profile for various errors in choice of center. Demonstrates that diagnostic is extremely sensitive to choice of center.

Conclusions and Further Research

- Python image analysis software developed to evaluate index of refraction, and hence densities of different species, in axisymmetric plasma jets
- Next step: apply image analysis to MHD generator relevant plasma jet burning with hydrocarbon combustion products and seed metals
- Will aid in investigations of arcing behavior near MHD generator electrodes

References

Acknowledgments

- Work supported by DOE contract DE-AC02-09CH11466. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (OWDTS) under the Science Undergraduate Laboratory Internships Program (SULI).