
Introduction to Plasma

ALPhA Laboratory Immersion

Arturo Dominguez

June 23, 2014

1 Introductory Remarks

This lecture is intended to be a brief introduction to what we consider to be the
principal ”must know” characteristics of plasma. It is, in no way, intended to
be a comprehensive discussion of the topic. For more advanced introductions
to plasma physics, there are several good resources: eg. Introduction to Plasma
Physics (F. Chen), Plasma Physics (R, Goldston, P. Rutherford). There are
also free online lecture notes of Intro to Plasma courses: R. Fitzpatrick at UT
Austin and R. Parker at MIT (linkable on the pdf of this document).

2 Plasma Characteristics

When gas becomes ionized it becomes a plasma. Typically, what we consider to
be a plasma is actually not fully ionized. In many cases, only a small fraction of
the gas is ionized. These are called (not surprisingly) weakly ionized plasmas,
as opposed to fully ionized plasmas (deep in the sun or inside a magnetically
confined fusion device). The degree of ionization is determined by the Saha
Equation:

ni
nn
≈ 2.4× 1021

T 3/2

ni
e−Ui/kBT (1)

Where ni and nn are the density of the ions and the neutrals in [m−3], T is the
gas temperature in Kelvin, kB is Boltzmann’s constant and Ui is the ionization
energy, that is, the energy required to remove the outermost electron. As a
comparison, at standard temperature and pressure, nitrogen has a degree of
ionization of:

ni
nn
≈ 10−122. (2)

As the temperature starts rising to the order of Ui (that is, to around a few
thousands degrees K), the ionization becomes non-negligible and the gas be-
comes a plasma.
The general properties that characterize a plasma are the following:
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• Good Conductor: Due to the free charges available for the transmission
of current, plasmas are generally very good conductors.

• Quasi-neutrality: If a small accumulation of charges arises in a plasma,
the coulomb forces will act to attract opposite charges to fill that gap,
hence:

ne = ΣiZini (3)

where ne is the number density of electors, ni is the number density of
the i’th ion species and Zi is the atomic number of that species, where
we have folded in the degree of ionization in the Zi. Equation 3 is simply
stating that the negative particles and the positive particles balance out.

• Collective Behavior: The fact that plasma reacts to electric and mag-
netic fields as well as collisions (pressure forces) gives the plasma a collec-
tive characteristic not present in neutral gases. This behavior is crucial to
many of the fields of study in plasma and, as will be observed, in fusion
research.

There are 2 very important quantities that are intrinsic to a plasma: the plasma
frequency ωp and the Debye length λD. In this lecture I will show how to derive
these quantities from a simple though experiment. First, we will review some
concepts of dynamics.

3 Review of basic mechanics equations

Disregarding magnetic forces, the basic equation of motion of a given particle of
mass m1 and electric charge q1 when it comes a distance r1,2 to another charged
particle of mass m2 and charge q2 is given by the equation:

m1~a = Σ~F = ~FG + ~FE =

[
Gm1m2

r21,2
+

q1q2
4πε0r21,2

]
r̂ (4)

where ~FG is the gravitational attraction (hence the minus sign) and ~FE is the
electrical force. G and ε0 are the gravitational constant and the permittivity of
free space respectively. Assuming particle 1 is an electron and particle 2 is a
Deuterium isotope, then the ratio between the forces is:

FE
FG

= 1.1× 1039, (5)

therefore, for laboratory plasmas, gravitational forces can be disregarded and
we can focus only on electric and magnetic forces, otherwise called the Lorentz
Force.
For a particle of mass m and charge q moving with a velocity ~v through an
electric and magnetic field of magnitudes ~E and ~B respectively, the equation of
motion of the particle is:

~F = m~a = q
[
~E + ~v × ~B

]
(6)
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Figure 1: Moving the center of mass of the electrons with respect to the ions
creates a restoring force

This is the equation we will use when analyzing the mechanics of individual
particles in the plasma.

4 Plasma thought experiment

Let’s begin with a simple picture of a rectangular box of plasma which, as
quasi-neutrality dictates, is composed of electrons and positive ions, as shown
in Figure 1.

4.1 Plasma Frequency

Now suppose we are to move the center of mass of the electrons to the left (or
negative direction in our x̂ axis) a distance ∆x. There is now an accumulation
of electrons on the left and an accumulation of ions on the right. An electric
field is therefore created which points away from the positive slab and towards
the negative slab. In fact, if we imagine the distance between the positive and
negative slabs to be very small compared to the area of the slabs, then the
boundary conditions are too far from our points of interest and we can view
this as an ideal parallel plate capacitor.
The electric field inside an ideal parallel plate capacitor is simply:

~E =
σ

ε0
=
Q/A

ε0
=

(eneA∆x)/A

ε0
=
ene∆x

ε0
(7)
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Figure 2: The electric field can be determined by finding the electric field created
by individual charge volumes and integrating throughout the slab.

pointing in the negative direction, where σ is the surface charge density (charge
per unit area) of the plate, or slab in this case, Q is the total charge of the slab
and A is its area. Note that the electric field is uniform between the slabs and
it does not depend on their area, only on their thickness and number density.
While we could just take equation 7 as a given, its derivation is straightforward
and gives some insight on the power of its symmetry.
The electric field can be found by finding the individual contributions from
infinitesimal charges from the positively charged slab (for simplicity) and then
adding all contributions. In figure 2, we show the geometry we’d like to work
with. We’d like to find the total electric field provided by the slab on a point
that is a distance L from it. We start by finding the contribution to the electric
field given by a small charge dQ arbitrarily positioned a distance ρ from the
position on the slab closest to our point. As shown on the figure, the distance
from dQ to our test point is equal to

√
L2 + ρ2 and the value of dQ is:

dQ = enedV = ene(ρdφ · dρ∆x). (8)

We expect that the only component of the electric field from dQ, ~EdQ, that
will not be canceled out due to symmetry is the component perpendicular to
the slab, shown as ~E(dQ)⊥ in Figure 2, so we can use only this component in
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the total sum:

~E(dQ)⊥ =
dQ

4πε0 (L2 + ρ2)
(cosα)(−x̂) = −ene∆x

4πε0

L

(L2 + ρ2)
3/2

ρdρdφx̂ (9)

Where we’ve used: cos (α) = L/
√
L2 + ρ2. Now, we can sum all contributions

by integrating Equation 9 through all φ = 0 → 2π and ρ = 0 → ∞. Note
that we are assuming that the size of the slabs is much, much larger than the
separation between them. By using the following replacement:

Z =
(
L2 + ρ2

)−1/2
(10)

dZ = −ρ
(
L2 + ρ2

)−3/2
dρ (11)

We can integrate Equation 9 to find the total electric field:

~E = −
∫ 2π

0

∫ ∞

0

ene∆x

4πε0

L

(L2 + ρ2)
3/2

ρdρdφx̂ =
ene∆xx̂

2ε0

∫ ∞

L

dZ (12)

=
eneL∆xx̂

2ε0

(
L2 + ρ

)−1/2 ∣∣∞
0

=
−ene∆x

2ε0
x̂ (13)

Note, again, that the distance to the slab has cancelled out. Finally, if we take
the contribution from the negative slab, which we can derive using the exact
same procedure, and noticing that the electric fields should be in the same
direction, the total field is simply twice the one calculated in Equation 13:

~Etot =
−ene∆x

ε0
x̂ (14)

which is what was stated previously. As a side note, the most common way of
finding the electric field in a capacitor is done using Gauss’ Law: ∇ · ~E = ρ/ε0,
where, in our case, ρ = ene is the volume charge density. We won’t go into it
here, but this is also a very beautiful derivation which also uses the symmetry
of the system.
Now, if we have an electron in the middle of the box feeling the electric field, the
force on this electron (which, remember, has been shifted in the −x̂ direction),
is:

~Fe = me~a = −e ~E =
e2ne(− ~∆x)

ε0
→ ~a = − e

2ne
meε0

~∆x (15)

Where I have incorporated the direction of the shift in to the ∆x vector. But
Equation 15 is simply that of a harmonic oscillator with frequency:

ωpe ≡
√
e2ne
meε0

(16)

Not surprisingly this is the electron plasma frequency of the system. Anal-
ogously, for an ion of charge Ze and mass mi, the ion plasma frequency is:
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ωpi =
√

(Z2e2ni)/(miε0). Let’s look at it in a little more detail: If you look at
the thought experiment, for the same displacement, the total charge in each slab
will increase as you increase the electron number density ne, hence the force is
stronger and our oscillation is faster. Also, for the same field, the acceleration
on electrons is greater than that of ions because the same force (e ~E) is excerpted
on such disparate masses. This explains the inverse relation on mass.

4.2 Thermal Velocity

Now, let’s forget about the thought experiment for a second and think about
the individual moving particles in our system. As energy is given to the plasma
(through external voltages, neutral particle bombardment, microwave heating,
etc.), the particles will start accelerating and colliding with each other. The
particles will all gain random velocities which, as can be derived from statistical
mechanical arguments, follows the Maxwell-Boltzmann distribution function:

fv(vx, vy, vz, x, y, z) = n(x, y, z)
( m

2πkT

)3/2
e

[
−m(v2

x+v2
y+v2

z)

2kT

]
(17)

where fv(vx, vy, vz, x, y, z) is the probability that a particle has a velocity ~v =
vxx̂ + vy ŷ + vz ẑ and is located an infinitesimal distance from ~r = [x, y, z],
k = 1.38× 10−23JK−1 is the Boltzmann constant, T is the temperature and m
is the particle mass. The probability distribution is normalized such that:

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fv(vx, vy, vz, x, y, z)dvxdvydvz = n(x, y, z)

What Equation 17 says is that the velocity of the particles are distributed in a
Gaussian or bell curve with a width proportional to the temperature of the gas.
Or, put it another way, the width of distribution in velocity space is what gives
rise to the concept of temperature of a gas.

If we want to study the speed distribution of the particles, v ≡ |v| ≡
√
v2x + v2y + v2z ,

we find the more typical form of the the Maxwell-Boltzmann distribution func-
tion:

fv(v) = 4πn0

( m

2πkT

)3/2
v2e

[
−mv2

2kT

]
(18)

an example of which is shown in Figure 3 (note that the density has been taken
as homogeneous, n0, to simplify the analysis). As is clear, the temperature of
the gas is related to the width of the distribution as well as to the average speed
vmean =

√
3kT/m, as well as the most probable speed (the peak of the curve)

vpeak =
√

2kT/m. There is, therefore, a characteristic speed of the particles
which we call the thermal speed defined as:

vt ≡
√
kT

m
(19)

Now, the electrons and ions will have their own thermal speeds given by: vte =√
kTe/me and vti =

√
kTi/mi. How do these speeds typically compare?
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Figure 3: Maxwell-Boltzmann distribution function of Argon gas at different
temperatures. The x̂-axis is proportional to the speed of the atoms. Note that
the area under the curve must be 1.

Let’s say an electron and an ion are getting energy from an electric field (which
is most often the case) for a given amount of time t. The momentum gained
by both particles is the same: meve = mivi = eEt. so ve/vi = mi/me � 1.
This disparity translates to vte and vti hence, if energy transfer between species
is low, Te/Ti ∝ mi/me � 1. Note that even if the particles have enough time
to reach thermal equilibrium, which is more common in magnetically confined
plasmas, Te = Ti still leads to vte � vti. Hence, we always have much more
thermal (faster) electrons than ions.

4.3 Debye Lengths

Finally, we can go back to our thought experiment with the added knowledge of
the plasma thermal speeds. The first, and easiest way, of arriving at the Debye
length is to do a dimensional analysis of what we’ve already acquired. We’ve
found a characteristic [time] in the ωp, and we’ve found a characteristic speed,
or [length]/[time] in vt. Therefore, we can immediately deduce a characteristic
length called the Debye length:

λD ≡
vt
ωp

=

√
kT
m√
q2n
mε0

=

√
kTε0
q2n

(20)
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More, specifically, the Debye length is defined as:

λDe =

√
kTeff ε0
e2ne

(21)

where T−1eff = T−1e + T−1i (derived from a more detailed analysis of Poisson’s
Equation). Nonetheless, when we can take the ions as stationary (particularly
in weakly ionized cold plasmas), the Debye length is effectively taken as the
electron Debye length:

λD =

√
kTeε0
e2ne

. (22)

To get a more intuitive picture of what the Debye length is related to, we can
go back to the thought experiment where we now have a picture of an electron
that is subjected to a simple harmonic oscillator system. If we were to follow
the motion of the electron in this simple picture, it would follow a harmonic
motion of the form:

x = A cos (ωpet) (23)

where I have disregarded any phase and I still haven’t determined it’s amplitude.
Now how can we determine the amplitude A of oscillation? If we take the time
derivative of Equation 23, we can find the velocity of the electron:

v = −Aωpe sin (ωpet) (24)

But we know that the speed of the electrons is around vthe (of course, this is a
characteristic speed), so we can use that as the constraint and we have

Aωpe = vte → A = vte/ωpe ≡ λDe. (25)

Where we have recovered the result found from dimensional analysis.
So, what is the meaning of the Debye Length? One way of looking at it is
this: The plasma wants to shield itself off from inhomogeneous charge buildup,
therefore, as our thought experiment showed, the plasma will quickly reassemble
to cancel the fields. Now, if the electric field comes from an externally applied
source, e.g. a positive electrode in the plasma, the electrons will quickly try to
shield it, but since they are moving so fast (vte) and in all directions, there is a
region close to the electrode where the electrons will escape (due to their own
inertia) and not completely shield it. This region, where the electric fields are
not completely shielded, is called the sheath and its length is of the order of the
Debye length.

4.4 Updated definition of a plasma

Now that we have discussed the important parameters of a non-magnetized
plasma, let’s update our definition of a plasma:

• ω � ωpe: The system should respond quickly to changes (of order ω) that
we impose on it.

• L� λD: The size of our system should be large enough so that the plasma
can successfully shield electrostatic fields.
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System ne[m
−3] Te[eV ] ωpe[s

−1] λD[m]

Interstellar gas 106 1 105 10
Solar Wind 107 10 105 10

Van Allen belts 109 102 106 1
Ionosphere 1011 10−1 107 10−2

Solar Corona 1013 102 108 10−3

Candle flame 1014 10−1 109 10−4

Neon lights 1015 1 109 10−4

Gas Discharge 1018 2 1011 10−5

Process Plasma 1018 102 1011 10−4

Fusion Experiment 1019 103 1011 10−4

Fusion Reactor 1020 104 1012 10−4

Lightning 1024 3 1014 10−8

Electrons in metal 1029 10−2 1016 10−12

Table 1: Plasma Frequency and Debye length for various systems

5 Plasma frequency and Debye length for vari-
ous plasma systems

In Table 1 it’s possible to view the wide range of density and temperature where
plasma exists. The plasma frequency and Debye length has been calculated to
give a sense of the characteristic parameters in the systems.

The Electrons in metal case leads to an interesting discussion, outlined in
Feynman’s Lectures on Physics VII 32-7 (linked in the pdf) where the reflection
and transparency of metals to electromagnetic waves can be viewed through the
lens of plasma.
Finally, the ωpe of the ionosphere leads to distinct behavior between AM and
FM radio waves. It explains the reflection of AM waves (where ω < ωpe) and
the penetration of FM waves (where ω > ωpe).

6 Magnetized plasmas

Finally, we’ll do a small introduction to what happens when we incorporate
effects of magnetic fields on the plasma. As shown in Equation 6, the force of a
particle which is moving in a magnetic field is of the form:

~F = m~a = q~v × ~B → ~a =
q

m
(~v × ~B) (26)

Suppose a positively charged particle of mass m and charge q is moving in the
plane of the paper with velocity ~v and there is a magnetic field ~B pointing into
the paper. As shown in Figure 5, the force, hence the acceleration of the particle
is always pointing towards a center of motion and the particle draws a circular
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Figure 4: The AM spectrum is well below the ≈ 10MHz ωpe of the ionosphere,
leading to their reflection. FM waves, at higher frequency, penetrate it.

Figure 5: Trajectory of a positively charged particle moving with a velocity ~v
where there is a magnetic field pointing into the page.
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orbit in the plane. From Equation 26, the magnitude of the acceleration is
a = qvB/m. But we know from kinematics that if a particle is rotating around
a fixed point, the acceleration must be centripetal and the magnitude should
be:

a =
v2

r
=
qvB

m
→ r =

vm

qB
(27)

If the particle that is rotating is an electron (ion) with speed vte (vti) then the
radius of rotation is called the electron (ion) gyro-radius or Larmor radius and
the equations are as follows:

ρe =
mevte
eB

, ρi =
mivti
ZeB

(28)

Finally, we can figure out the frequency of rotation of an electron or ion that is
rotating at thermal speeds: vt = ωcρ. These frequencies are very important in
magnetized plasma physics and are called electron and ion gyro-frequencies (or
cyclotron frequencies):

ωce =
vte
ρe

=
vte
mevte
eB

=
eB

me
, ωci =

ZeB

mi
(29)

If the particles are not confined to the plane perpendicular to the magnetic
fields but can move in three dimensions, the particles move freely in the direc-
tion parallel to the magnetic field but are confined to move in circular orbits
perpendicular to the fields, therefore, they trace spiral orbits around the mag-
netic fields, as shown in Figure 6. This characteristic of plasmas is responsible
for the aurora borealis (northern lights) and is the basis for magnetically con-
fined fusion reactors as will be discussed in the Fusion and Fusion Reactors
lecture.
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Figure 6: In three dimensions, particles follow spiral trajectories around mag-
netic fields.
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