Waves in plasmas

Saskia Mordijck

What are Waves?

Regular waves in water

Waves are a **periodic perturbation** that can be described in some circumstances by a **linear approximation**. Waves occur around us and on example are surfaces waves in the ocean

http://hema.ipfw.edu/Geopics/Framesrc/Water/waves.html

What are Waves?

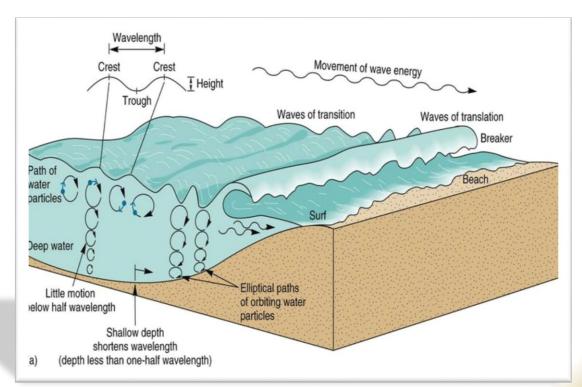
Regular waves in water

Waves that crash onto shore

What are Waves?

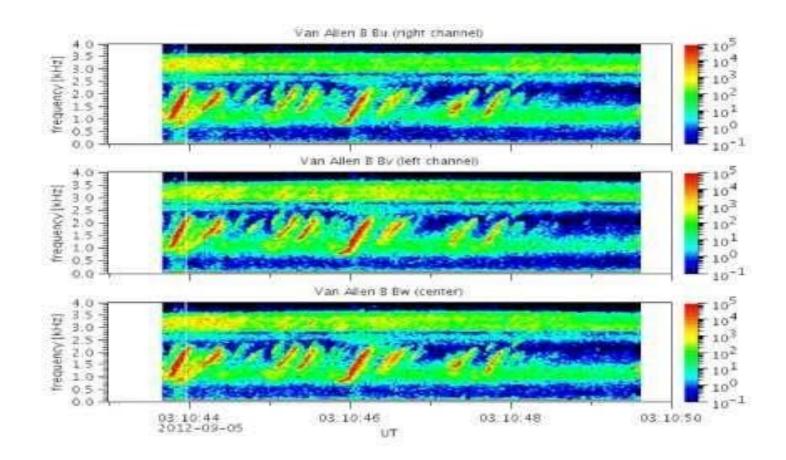
The wave characteristics can change based on its surroundings

We use the **dispersion relationship** to describe the relation between the wavelength and the frequency of the wave.



http://blogs.oregonstate.edu/seagrantscholars/2016/01/26/waves/

Waves in plasmas : Whistler waves measured in the Van Allen Belts



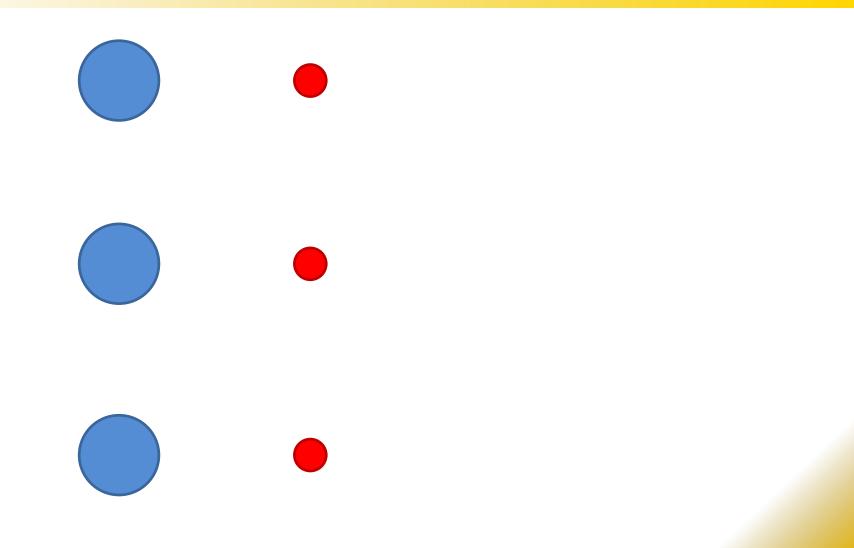
Summary of waves in plasmas

- Plasma wave (no B-field necessary) in a cold plasma
 - lons are stationary
- Wave-particle interaction
- Plasma wave in non-cold plasma
- MHD waves (B-field)
 - Perpendicular to the B-field
 - Parallel to the B-field

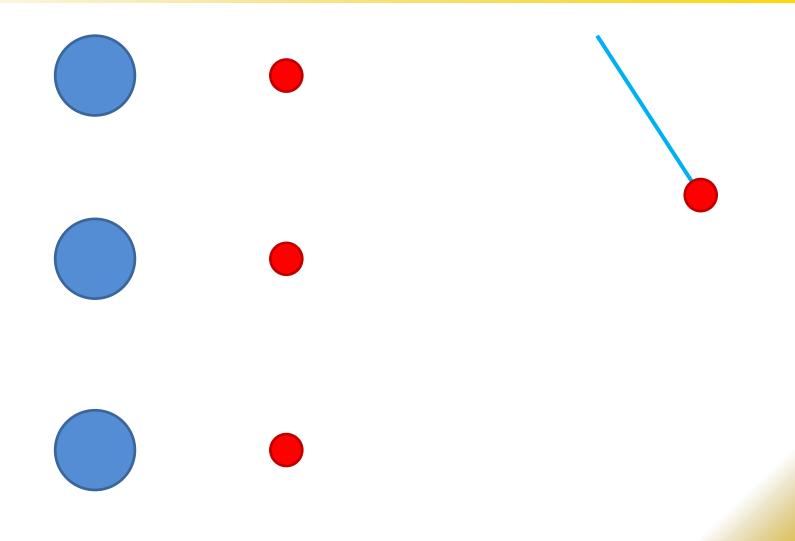
Summary of waves in plasmas

- Plasma wave (no B-field necessary) in a cold plasma
 - lons are stationary
- Wave-particle interaction
- Plasma wave in non-cold plasma
- MHD waves (B-field)
 - Perpendicular to the B-field
 - Parallel to the B-field

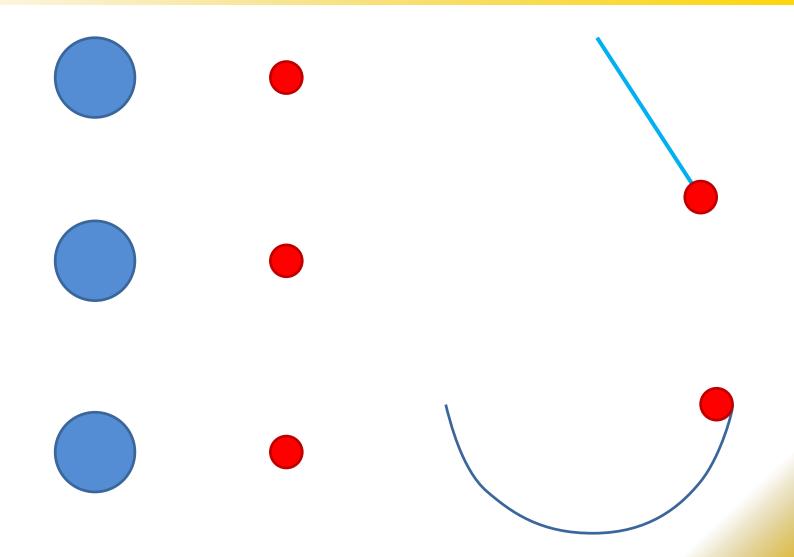
The plasma wave in a cold plasma

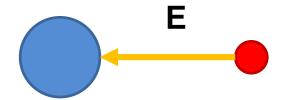


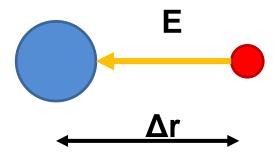
The plasma wave : Similar to pendulum motion

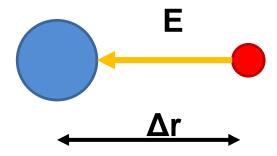


The plasma wave : Similar to ball stuck in a valley

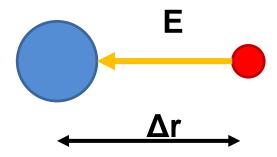






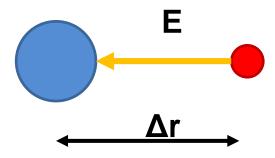


$$m_e \frac{dv}{dt} = -eE$$



$$m_e \frac{d\nu}{dt} = -eE$$

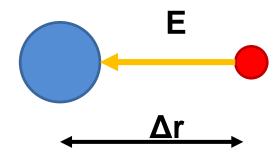
$$E \sim \frac{q}{\Delta r^2} = \frac{en_e}{\Delta r^2}$$



$$m_e \frac{dv}{dt} = -eE$$
$$E \sim \frac{q}{\Delta r^2} = \frac{en_e}{\Delta r^2}$$

$$\frac{d^2r}{dt^2} = -\frac{e^2n_e}{m_e}\frac{1}{\Delta r^2}$$

The plasma wave: Derivation similar to the pendulum principle

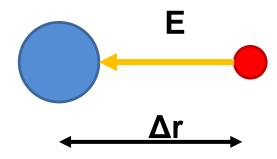


Simple Harmonic Oscillator:

$$\frac{d^2r}{dt^2} = -\omega r$$

$$m_e \frac{dv}{dt} = -eE$$
$$E \sim \frac{q}{\Delta r^2} = \frac{en_e}{\Delta r^2}$$
$$\frac{d^2r}{dt^2} = -\frac{e^2n_e}{m_e}\frac{1}{\Delta r^2}$$

The plasma wave: Derivation similar to the pendulum principle



dv

Simple Harmonic Oscillator:

$$\frac{d^2r}{dt^2} = -\omega r$$

If we assume that Δr is close to 1 then:

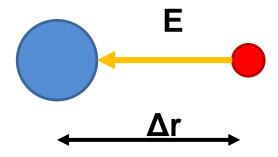
$$\frac{1}{\Delta r^2} \sim \Delta r$$

$$m_{e} \frac{1}{dt} = -eE$$

$$E \sim \frac{q}{\Delta r^{2}} = \frac{en_{e}}{\Delta r^{2}}$$

$$\frac{d^{2}r}{dt^{2}} = -\frac{e^{2}n_{e}}{m_{e}}\frac{1}{\Delta r^{2}}$$

The plasma wave: Plasma frequency

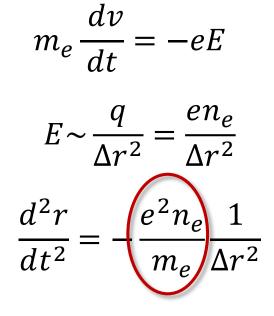


Simple Harmonic Oscillator:

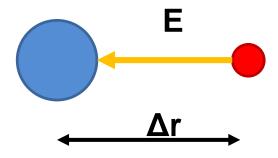
$$\frac{d^2r}{dt^2} = -\omega r$$

If we assume that Δr is close to 1 then:

$$\frac{1}{\Delta r^2} \sim \Delta r$$



The plasma wave: Plasma frequency

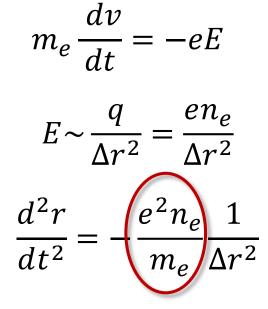


Simple Harmonic Oscillator:

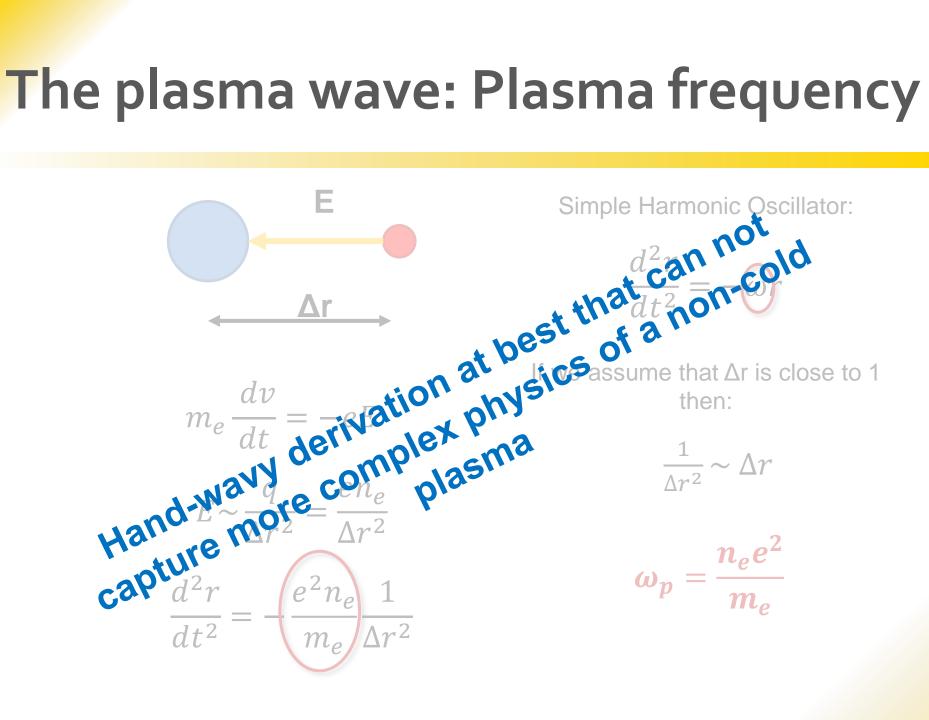
$$\frac{d^2r}{dt^2} = -\omega r$$

If we assume that Δr is close to 1 then:

$$\frac{1}{\Delta r^2} \sim \Delta r$$



The plasma wave: Plasma frequency



Equation of motion

$$nm\left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v}\nabla\boldsymbol{v}\right) = n(q\boldsymbol{E} + \frac{\boldsymbol{v}}{c} \times \boldsymbol{B})$$

Equation of motion

$$nm\left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v}\nabla\boldsymbol{v}\right) = n(q\boldsymbol{E} + \frac{\boldsymbol{v}}{c} \times \boldsymbol{B})$$

Continuity equation
$$\frac{\partial n}{\partial t} + \boldsymbol{\nabla} \cdot (n\boldsymbol{v}) = 0$$

Equation of motion

$$nm\left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v}\nabla\boldsymbol{v}\right) = n(q\boldsymbol{E} + \frac{\boldsymbol{v}}{c} \times \boldsymbol{B})$$

 $\frac{\partial n}{\partial t} + \boldsymbol{\nabla} \cdot (n\boldsymbol{\nu}) = 0$

+ Maxwell's equations

Starting point: Unmagnetized, Cold plasma

Equation of motion

$$nm\left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v}\nabla \boldsymbol{v}\right) = n(q\boldsymbol{E} + \frac{\boldsymbol{v}}{c} \times \boldsymbol{B})$$
Continuity equation

$$\frac{\partial n}{\partial t} + \boldsymbol{\nabla} \cdot (n\boldsymbol{v}) = 0$$

+ Maxwell's equations

Starting point: Unmagnetized, Cold plasma

 $n = n_0 + \widetilde{n}$ $v = v_0 + \widetilde{v}$ $E = E_0 + \widetilde{E}$ $B = B_0 + \widetilde{B}$

Equation of motion

$$nm\left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v}\nabla \boldsymbol{v}\right) = n(q\boldsymbol{E} + \frac{\boldsymbol{v}}{c} \times \boldsymbol{B})$$
Continuity equation

$$\frac{\partial n}{\partial t} + \boldsymbol{\nabla} \cdot (n\boldsymbol{v}) = 0$$

+ Maxwell's equations

Starting point: Unmagnetized, Cold plasma

$$n = n_0 + \widetilde{n}$$
 $v = \gamma_0 + \widetilde{v}$ $E = E_0 + \widetilde{E}$ $B = E_0 + \widetilde{B}$

Equation of motionContinuity equation
$$nm\left(\frac{\partial v}{\partial t} + v\nabla v\right) = n(qE + \frac{v}{c} \times B)$$
 $\frac{\partial n}{\partial t} + \nabla \cdot (nv) = 0$ + Maxwell's equationsStarting point: Unmagnetized, Cold plasma

$$n = n_0 + \widetilde{n}$$
 $v = v_0 + \widetilde{v}$ $E = E_0 + \widetilde{E}$ $B = B_0 + \widetilde{B}$

Linearize and loose second order

$$n_0 m(\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} + \widetilde{\boldsymbol{v}} \nabla \widetilde{\boldsymbol{v}}) = n_0 (q \widetilde{\boldsymbol{E}} + \frac{\widetilde{\boldsymbol{v}}}{c} \times \widetilde{\boldsymbol{B}})$$

Equation of motion

$$nm\left(\frac{\partial v}{\partial t} + v\nabla v\right) = n(qE + \frac{v}{c} \times B) \qquad \qquad \frac{\partial n}{\partial t} + \nabla \cdot (nv) = 0$$
+ Maxwell's equations
Starting point: Unmagnetized, Cold plasma

$$n = n_0 + \widetilde{n}$$
 $v = \gamma_0 + \widetilde{v}$ $E = P_0 + \widetilde{E}$ $B = P_0 + \widetilde{B}$

Linearize and loose second order

$$n_0 m \left(\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} + \widetilde{\boldsymbol{v}} \nabla \widetilde{\boldsymbol{v}} \right) = n_0 \left(q \widetilde{\boldsymbol{E}} + \frac{\widetilde{\boldsymbol{v}}}{c} \times \widetilde{\boldsymbol{B}} \right)$$
$$\frac{\partial \widetilde{n}}{\partial t} + \boldsymbol{\nabla} \cdot \left(n_0 \widetilde{\boldsymbol{v}} \right) = 0$$

Equation of motion

$$nm\left(\frac{\partial v}{\partial t} + v\nabla v\right) = n(qE + \frac{v}{c} \times B) \qquad \qquad \frac{\partial n}{\partial t} + \nabla \cdot (nv) = 0$$
+ Maxwell's equations
Starting point: Unmagnetized, Cold plasma

$$n = n_0 + \widetilde{n}$$
 $v = \gamma_0 + \widetilde{v}$ $E = E_0 + \widetilde{E}$ $B = B_0 + \widetilde{B}$

Linearize and loose second order

$$n_0 m \left(\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} + \widetilde{\boldsymbol{v}} \boldsymbol{v} \widetilde{\boldsymbol{v}} \right) = n_0 \left(q \widetilde{\boldsymbol{E}} + \frac{\widetilde{\boldsymbol{v}}}{c} \times \widetilde{\boldsymbol{B}} \right)$$
$$\frac{\partial \widetilde{n}}{\partial t} + \boldsymbol{\nabla} \cdot \left(n_0 \widetilde{\boldsymbol{v}} \right) = 0$$

Continuity equation

$$\frac{\partial \widetilde{n}}{\partial t} = -n_0 \frac{\partial \widetilde{\boldsymbol{\nu}}}{\partial r}$$

Equation of motion

$$m\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} = q\widetilde{\boldsymbol{E}}$$

Continuity equation

$$\frac{\partial \widetilde{n}}{\partial t} = -n_0 \frac{\partial \widetilde{\boldsymbol{v}}}{\partial r}$$

Maxwell equations linearized

$$\nabla \cdot \widetilde{\boldsymbol{E}} = 4\pi q \widetilde{\boldsymbol{n}} \qquad \nabla \times \widetilde{\boldsymbol{E}} = -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}$$
$$\nabla \cdot \widetilde{\boldsymbol{B}} = 0 \qquad \nabla \times \widetilde{\boldsymbol{B}} = \frac{4\pi}{c} \widetilde{\boldsymbol{J}} + \frac{1}{c} \frac{\partial \widetilde{\boldsymbol{E}}}{\partial t} \qquad \widetilde{\boldsymbol{J}} = q n_0 \widetilde{\boldsymbol{v}}$$

Equation of motion

$$m\frac{\partial\widetilde{\boldsymbol{v}}}{\partial t} = q\widetilde{\boldsymbol{E}}$$

Equation of motion

 $m\frac{\partial\widetilde{\boldsymbol{v}}}{\partial t} = q\widetilde{\boldsymbol{E}}$

Continuity equation

$$\frac{\partial \widetilde{n}}{\partial t} = -n_0 \frac{\partial \widetilde{\boldsymbol{v}}}{\partial r}$$

Maxwell equations linearized

$$\nabla \cdot \widetilde{\boldsymbol{E}} = 4\pi q \widetilde{\boldsymbol{n}} \qquad \nabla \times \widetilde{\boldsymbol{E}} = -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}$$
$$\nabla \cdot \widetilde{\boldsymbol{B}} = 0 \qquad \nabla \times \widetilde{\boldsymbol{B}} = \frac{4\pi}{c} \widetilde{\boldsymbol{J}} + \frac{1}{c} \frac{\partial \widetilde{\boldsymbol{E}}}{\partial t} \qquad \widetilde{\boldsymbol{J}} = q n_0 \widetilde{\boldsymbol{v}}$$

Use Fourier decomposition:

$$\widetilde{A} = \widetilde{A} \exp(i(\mathbf{k} \cdot \mathbf{x} - \omega t))$$

Continuity equation

Equation of motion $-i\omega m\widetilde{\boldsymbol{v}}=q\widetilde{\boldsymbol{E}}$

Maxwell equations linearized

 $-i\omega \widetilde{n} = -n_0 i \mathbf{k} \cdot \widetilde{\mathbf{v}}$

$$i\mathbf{k} \cdot \widetilde{\mathbf{E}} = 4\pi q \widetilde{n} \qquad i\mathbf{k} \times \widetilde{\mathbf{E}} = \frac{1}{c} i\omega \widetilde{\mathbf{B}}$$
$$i\mathbf{k} \cdot \widetilde{\mathbf{B}} = 0 \qquad i\mathbf{k} \times \widetilde{\mathbf{B}} = \frac{4\pi}{c} \widetilde{\mathbf{J}} - \frac{i\omega}{c} \widetilde{\mathbf{E}} \qquad \widetilde{\mathbf{J}} = q n_0 \widetilde{\mathbf{v}}$$

Use Fourier decomposition:

$$\widetilde{A} = \widetilde{A} \exp(i(\mathbf{k} \cdot \mathbf{x} - \omega t))$$

Continuity equation

 $-i\omega \widetilde{n} = -n_0 i \mathbf{k} \cdot \widetilde{\mathbf{v}}$

Equation of motion $-i\omega m\widetilde{\boldsymbol{\nu}} = q\widetilde{\boldsymbol{E}}$

Maxwell equations linearized

$$i\mathbf{k} \cdot \widetilde{\mathbf{E}} = 4\pi q \widetilde{n} \qquad i\mathbf{k} \times \widetilde{\mathbf{E}} = \frac{1}{c} i\omega \widetilde{\mathbf{B}}$$
$$i\mathbf{k} \cdot \widetilde{\mathbf{B}} = 0 \qquad i\mathbf{k} \times \widetilde{\mathbf{B}} = \frac{4\pi}{c} q n_0 \widetilde{\mathbf{v}} - \frac{i\omega}{c} \widetilde{\mathbf{E}}$$

Use Fourier decomposition:

$$\widetilde{A} = \widetilde{A} \exp(i(\mathbf{k} \cdot \mathbf{x} - \omega t))$$

Continuity equation

$$-i\omega\widetilde{n} = -n_0 i\boldsymbol{k}\cdot\widetilde{\boldsymbol{\nu}}$$

Equation of motion $-i\omega m\widetilde{\boldsymbol{v}} = q\widetilde{\boldsymbol{E}}$

Maxwell equations linearized

 $i\mathbf{k} \cdot \widetilde{\mathbf{E}} = 4\pi q \widetilde{n}$

$$i\mathbf{k} \cdot \widetilde{\mathbf{B}} = 0$$
 $\frac{ic}{\omega}\mathbf{k} \times \mathbf{k} \times \widetilde{\mathbf{E}} = \frac{4\pi}{c}qn_0\widetilde{\mathbf{v}} - \frac{i\omega}{c}\widetilde{\mathbf{E}}$

Use Fourier decomposition:

 $\widetilde{A} = \widetilde{A} \exp(i(\mathbf{k} \cdot \mathbf{x} - \omega t))$

Continuity equation

Equation of motion

 $-i\omega\widetilde{n} = -n_0 i\boldsymbol{k}\cdot\widetilde{\boldsymbol{v}}$

Maxwell equations linearized

 $i\mathbf{k} \cdot \widetilde{\mathbf{E}} = 4\pi q \widetilde{n}$

$$i\mathbf{k} \cdot \widetilde{\mathbf{B}} = 0$$
 $\frac{c}{\omega}\mathbf{k} \times \mathbf{k} \times \widetilde{\mathbf{E}} = \frac{4\pi n_0 q^2}{\omega m c} \widetilde{\mathbf{E}} - \frac{\omega}{c} \widetilde{\mathbf{E}}$

Use Fourier decomposition:

 $\widetilde{A} = \widetilde{A} \exp(i(\mathbf{k} \cdot \mathbf{x} - \omega t))$

Continuity equation

Equation of motion

 $-i\omega\widetilde{n} = -n_0 i\boldsymbol{k}\cdot\widetilde{\boldsymbol{v}}$

Maxwell equations linearized

 $i\mathbf{k} \cdot \widetilde{\mathbf{E}} = 4\pi q \widetilde{n}$

$$i\mathbf{k} \cdot \widetilde{\mathbf{B}} = 0$$
 $\mathbf{k} \times \mathbf{k} \times \widetilde{\mathbf{E}} = \frac{4\pi n_0 q^2}{mc^2} \widetilde{\mathbf{E}} - \frac{\omega^2}{c^2} \widetilde{\mathbf{E}}$

Use Fourier decomposition:

 $\widetilde{A} = \widetilde{A} \exp(i(\mathbf{k} \cdot \mathbf{x} - \omega t))$

Continuity equation

Equation of motion

 $-i\omega\widetilde{n} = -n_0 i \boldsymbol{k} \cdot \widetilde{\boldsymbol{\nu}}$

Maxwell equations linearized $\omega_p^2 = \frac{4\pi n_0 q^2}{m}$ $i\mathbf{k} \cdot \widetilde{\mathbf{E}} = 4\pi q \widetilde{n}$ Electro-Magnetic waves $i\mathbf{k} \cdot \widetilde{\mathbf{B}} = 0$ $\mathbf{k}(\mathbf{k} \cdot \widetilde{\mathbf{E}}) - \mathbf{k}^2 \widetilde{\mathbf{E}} = \frac{4\pi n_0 q^2}{mc^2} \widetilde{\mathbf{E}} - \frac{\omega^2}{c^2} \widetilde{\mathbf{E}}$ Use Fourier decomposition: $\widetilde{\mathbf{A}} = \widetilde{\mathbf{A}} \exp(i(\mathbf{k} \cdot \mathbf{x} - \omega t))$ $\frac{\omega_p^2}{c^2}$

$$-k^2 \,\widetilde{E} = \frac{\omega_p^2}{c^2} \widetilde{E} - \frac{\omega^2}{c^2} \widetilde{E}$$

$$-k^{2} \widetilde{E} = \frac{\omega_{p}^{2}}{c^{2}} \widetilde{E} - \frac{\omega^{2}}{c^{2}} \widetilde{E} \implies k^{2} = \frac{\omega^{2}}{c^{2}} - \frac{\omega_{p}^{2}}{c^{2}}$$

$$-k^{2} \widetilde{E} = \frac{\omega_{p}^{2}}{c^{2}} \widetilde{E} - \frac{\omega^{2}}{c^{2}} \widetilde{E} \implies k^{2} = \frac{\omega^{2}}{c^{2}} - \frac{\omega_{p}^{2}}{c^{2}} \implies k^{2} = \frac{\omega^{2}}{c^{2}} (1 - \frac{\omega_{p}^{2}}{\omega^{2}})$$

$$-k^{2} \widetilde{E} = \frac{\omega_{p}^{2}}{c^{2}} \widetilde{E} - \frac{\omega^{2}}{c^{2}} \widetilde{E} \implies k^{2} = \frac{\omega^{2}}{c^{2}} - \frac{\omega_{p}^{2}}{c^{2}} \implies k^{2} = \frac{\omega^{2}}{c^{2}} (1 - \frac{\omega_{p}^{2}}{\omega^{2}})$$

Dispersion relationship

$$\omega^2 = \omega_p^2 + c^2 k^2$$

$$-k^{2} \widetilde{E} = \frac{\omega_{p}^{2}}{c^{2}} \widetilde{E} - \frac{\omega^{2}}{c^{2}} \widetilde{E} \implies k^{2} = \frac{\omega^{2}}{c^{2}} - \frac{\omega_{p}^{2}}{c^{2}} \implies k^{2} = \frac{\omega^{2}}{c^{2}} (1 - \frac{\omega_{p}^{2}}{\omega^{2}})$$

Dispersion relationship

$$\omega^2 = \omega_p^2 + c^2 k^2$$

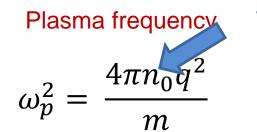
Plasma frequency

$$\omega_p^2 = \frac{4\pi n_0 q^2}{m}$$

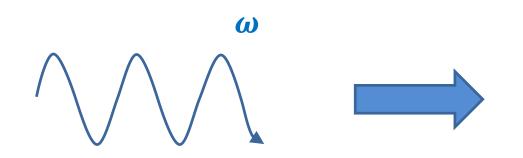
$$-k^{2} \widetilde{E} = \frac{\omega_{p}^{2}}{c^{2}} \widetilde{E} - \frac{\omega^{2}}{c^{2}} \widetilde{E} \implies k^{2} = \frac{\omega^{2}}{c^{2}} - \frac{\omega_{p}^{2}}{c^{2}} \implies k^{2} = \frac{\omega^{2}}{c^{2}} (1 - \frac{\omega_{p}^{2}}{\omega^{2}})$$

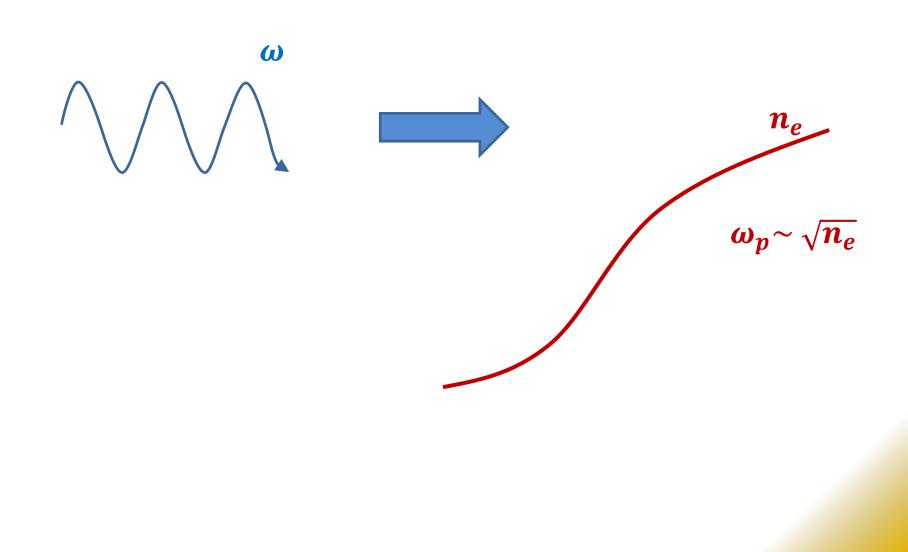
Dispersion relationship

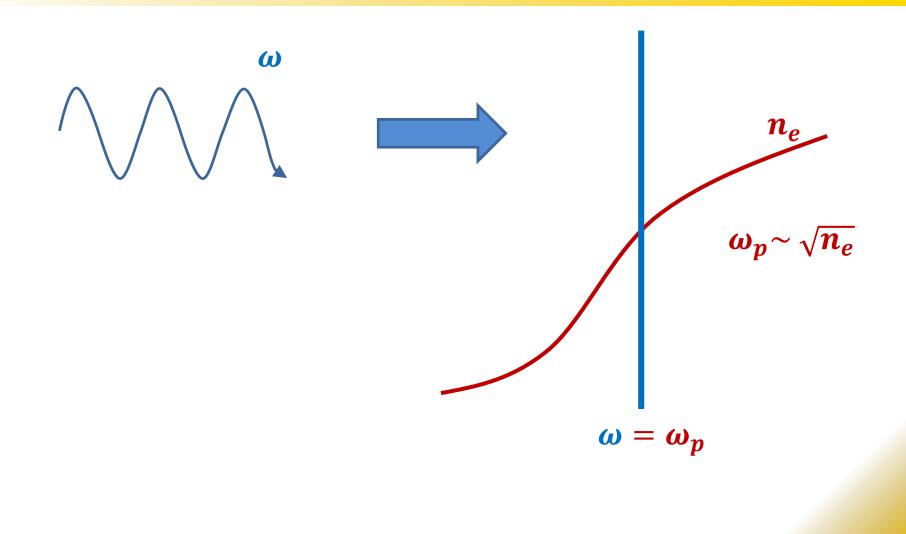
$$\omega^2 = \omega_p^2 + c^2 k^2$$

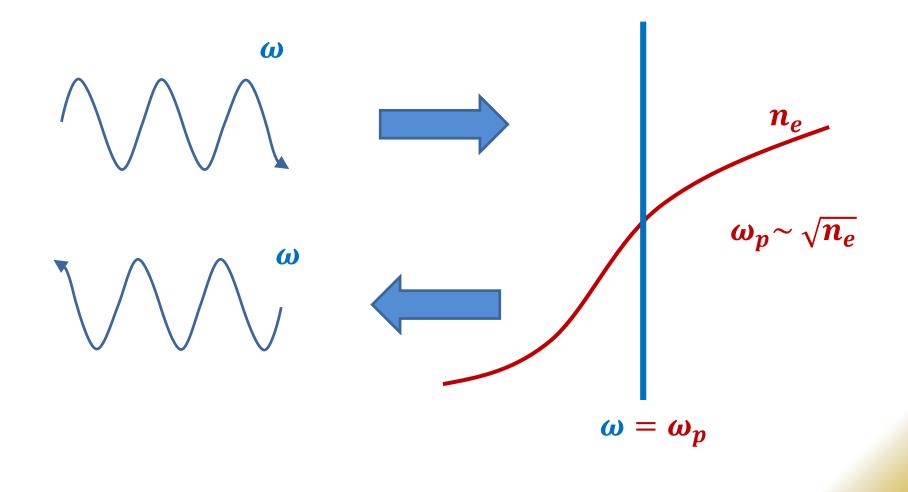


This can be diagnosed to measure density









Summary of the plasma wave

 (\mathbf{I})

In a cold plasma, electrons oscillate at a natural frequency (the plasma frequency) while the ions remain $\omega_p \sim \sqrt{n_e}$ fixed

The plasma frequency depends on the density and can thus be used to give information on the plasma density $\omega = \omega_p$

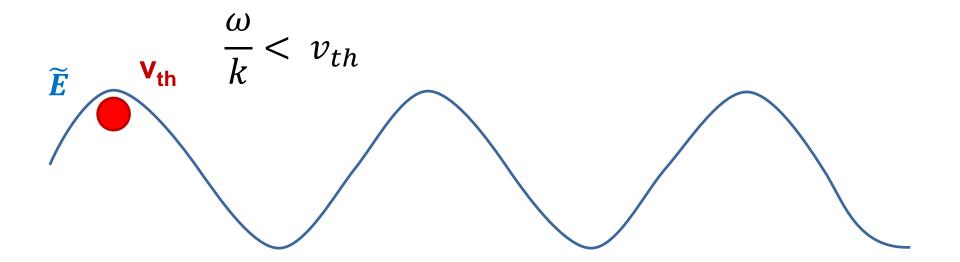
Summary of waves in plasmas

• Plasma wave (no B-field necessary) in a cold plasma

– lons are stationary

- Wave-particle interaction
- Plasma wave in non-cold plasma
- MHD waves (B-field)
 - Perpendicular to the B-field
 - Parallel to the B-field

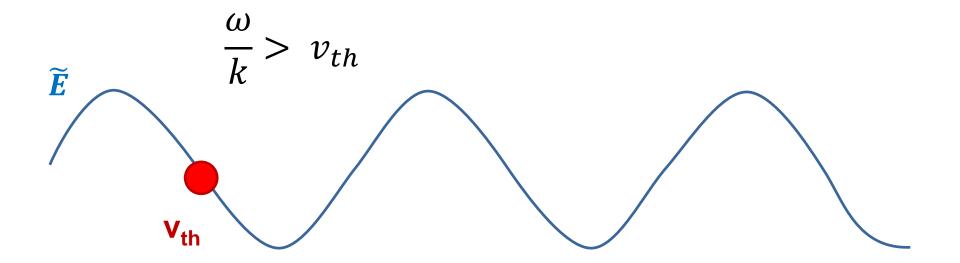
Interaction of waves and particles : no interaction



Particle is too fast to see the Electric field

$$-k^2 \widetilde{E} = \frac{\omega_p^2}{c^2} \widetilde{E} - \frac{\omega^2}{c^2} \widetilde{E}$$

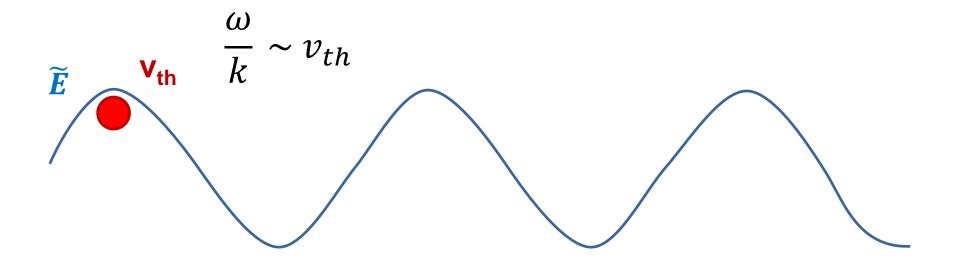
Interaction of waves and particles : trapped particle



Particle is too slow and gets trapped

$$-k^2 \,\widetilde{E} = \frac{\omega_p^2}{c^2} \widetilde{E} - \frac{\omega^2}{c^2} \widetilde{E}$$

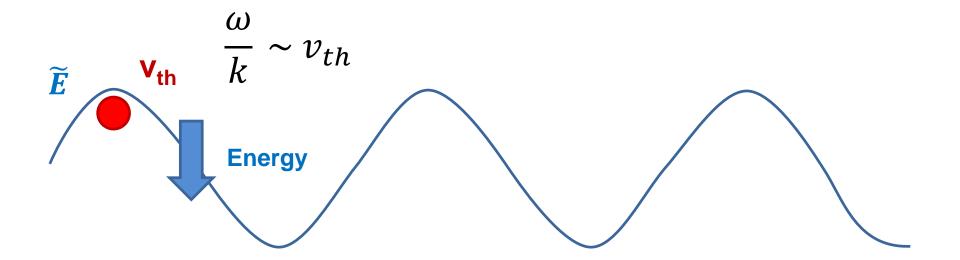
Interaction of waves and particles : resonance



Particle has the right speed and gets accelerated by the electric field

$$-k^2 \widetilde{E} = \frac{\omega_p^2}{c^2} \widetilde{E} - \frac{\omega^2}{c^2} \widetilde{E}$$

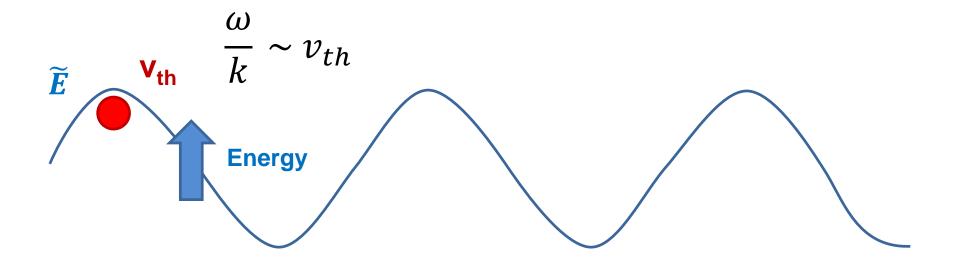
Interaction of waves and particles : resonant particles can give energy to the wave



Particle has the right speed and gets accelerated by the electric field

$$-k^2 \widetilde{E} = \frac{\omega_p^2}{c^2} \widetilde{E} - \frac{\omega^2}{c^2} \widetilde{E}$$

Interaction of waves and particles : the wave can also give energy to the particles



Particle has the right speed and gets accelerated by the electric field

$$-k^2 \widetilde{E} = \frac{\omega_p^2}{c^2} \widetilde{E} - \frac{\omega^2}{c^2} \widetilde{E}$$

Summary wave particle interaction

 $v_{th}Wa \overline{v}_{es} and particles interact in a plasma$

 \widetilde{E}

So particle motion can give energy to the wave, which can drive instabilities

On the other hand, waves can be used to give energy to and gets accelerated particles (see next talk) $-k^2 \tilde{E} = \frac{\omega_p^2}{c^2} \tilde{E} - \frac{\omega^2}{c^2} \tilde{E}$

Summary of waves in plasmas

- Plasma wave (no B-field necessary) in a cold plasma
 - lons are stationary
- Wave-particle interaction
- Plasma wave in non-cold plasma
- MHD waves (B-field)
 - Perpendicular to the B-field
 - Parallel to the B-field

Continuity equation

Equation of motion

$$\frac{\partial \tilde{n}}{\partial t} = -n_0 \frac{\partial \tilde{\boldsymbol{\nu}}}{\partial r}$$

$$m\frac{\partial\widetilde{\boldsymbol{v}}}{\partial t} = q\widetilde{\boldsymbol{E}}$$

Continuity equation

Equation of motion

Isothermal

$$\frac{\partial \tilde{n}}{\partial t} = -n_0 \frac{\partial \tilde{\boldsymbol{v}}}{\partial r}$$

$$m\frac{\partial\widetilde{\boldsymbol{v}}}{\partial t} = q\widetilde{\boldsymbol{E}} + \frac{\nabla\widetilde{\boldsymbol{p}}}{\boldsymbol{n}_0}$$

$$\tilde{p} = \tilde{n}T$$

Continuity equation

Equation of motion

Isothermal

$$\frac{\partial \tilde{n}}{\partial t} = -n_0 \frac{\partial \tilde{\boldsymbol{v}}}{\partial r}$$

$$m\frac{\partial \widetilde{v}}{\partial t} = q\widetilde{E} + \frac{\nabla \widetilde{p}}{n_0} \qquad \qquad \widetilde{p} = \widetilde{n}T$$

Maxwell equations linearized

$$\nabla \cdot \widetilde{E} = 4\pi q \widetilde{n} \qquad \nabla \times \widetilde{E} = -\frac{1}{c} \frac{\partial \widetilde{B}}{\partial t}$$
$$\nabla \cdot \widetilde{B} = 0 \qquad \nabla \times \widetilde{B} = \frac{4\pi}{c} \widetilde{J} + \frac{1}{c} \frac{\partial \widetilde{E}}{\partial t} \qquad \widetilde{J} = q n_0 \widetilde{\nu}$$

Continuity equation

Equation of motion

Isothermal

$$\frac{\partial \widetilde{n}}{\partial t} = -n_0 \frac{\partial \widetilde{v}}{\partial r}$$

$$m\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} = q\widetilde{\boldsymbol{E}} + \frac{\nabla \widetilde{\boldsymbol{p}}}{\boldsymbol{n}_0}$$

$$\tilde{p} = \tilde{n}T$$

Maxwell equations linearized

$$\nabla \cdot \widetilde{E} = 4\pi q \widetilde{n} \qquad \nabla \times \widetilde{E} = -\frac{1}{c} \frac{\partial B}{\partial t}$$
$$\nabla \cdot \widetilde{B} = 0 \qquad \nabla \times \widetilde{B} = \frac{4\pi}{c} \widetilde{J} + \frac{1}{c} \frac{\partial \widetilde{E}}{\partial t} \qquad \widetilde{J} = q n_0 \widetilde{\nu}$$

Use Fourier decomposition:

$$\widetilde{A} = \widetilde{A} \exp(i(\mathbf{k} \cdot \mathbf{x} - \omega t))$$

Continuity equation

Equation of motion

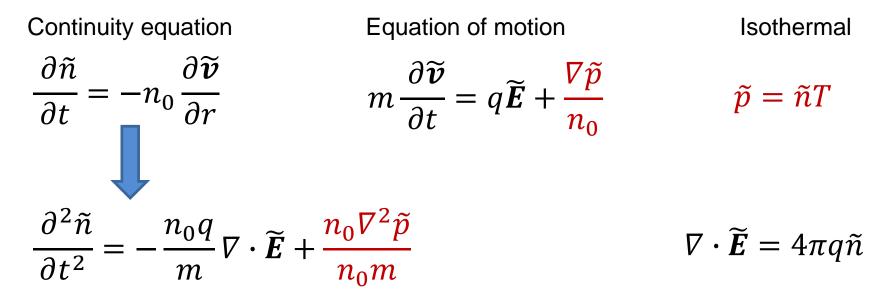
Isothermal

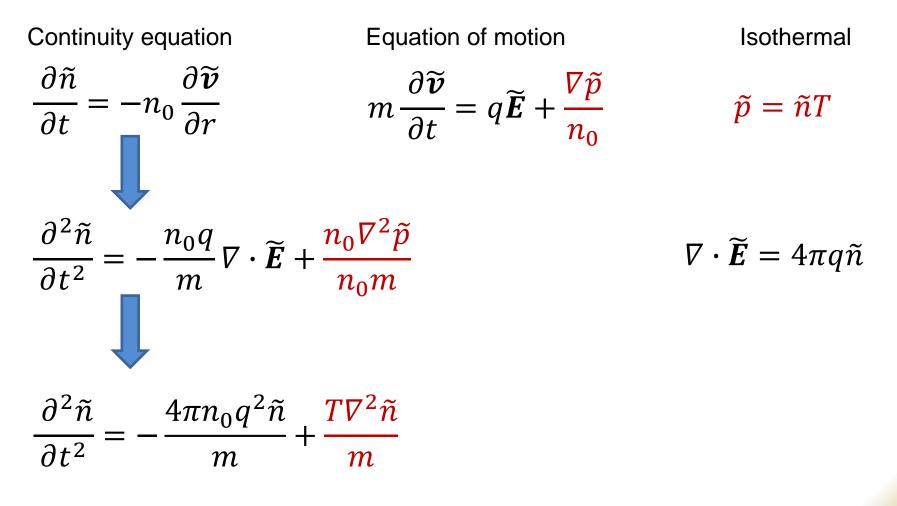
$$\frac{\partial \tilde{n}}{\partial t} = -n_0 \frac{\partial \tilde{\boldsymbol{v}}}{\partial r}$$

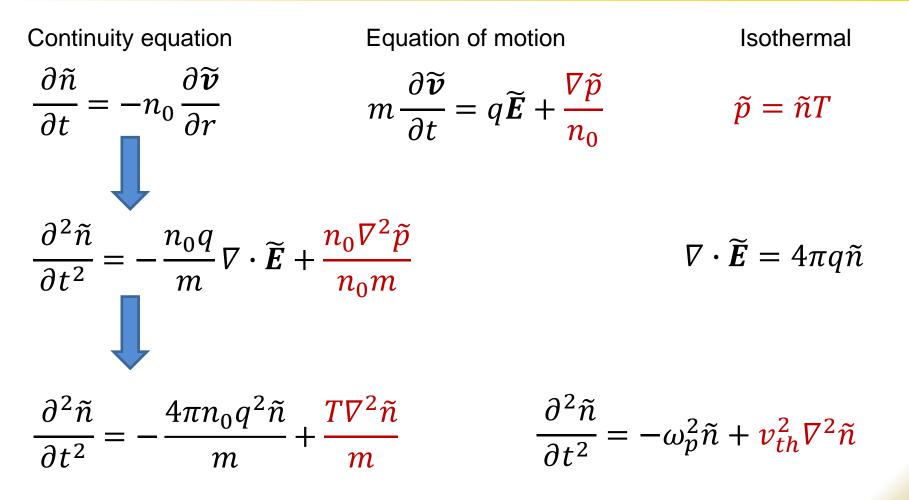
$$m\frac{\partial\widetilde{\boldsymbol{v}}}{\partial t} = q\widetilde{\boldsymbol{E}} + \frac{\nabla\widetilde{\boldsymbol{p}}}{\boldsymbol{n}_0}$$

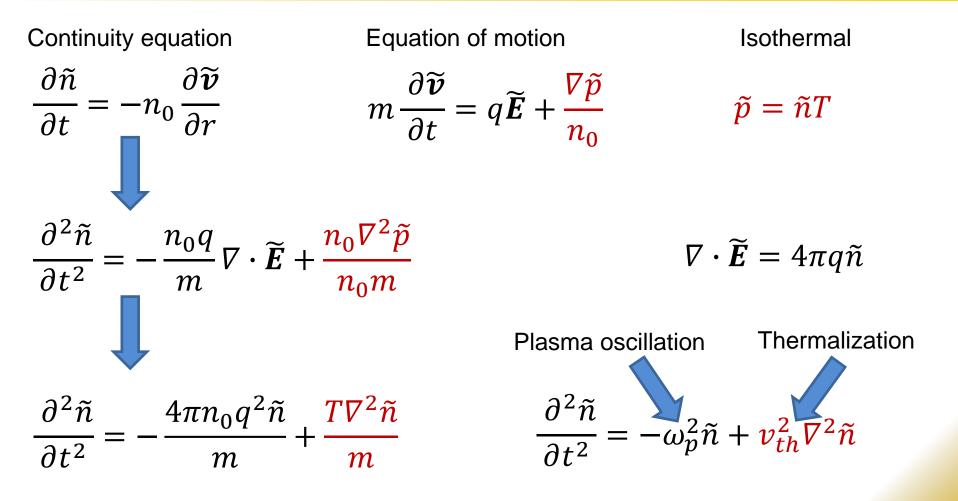
$$\tilde{p} = \tilde{n}T$$

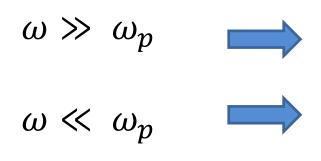
Continuity equation $\frac{\partial \tilde{n}}{\partial t} = -n_0 \frac{\partial \tilde{v}}{\partial r} \qquad m \frac{\partial \tilde{v}}{\partial t} = q \tilde{E} + \frac{\nabla \tilde{p}}{n_0} \qquad \tilde{p} = \tilde{n}T$ $\frac{\partial^2 \tilde{n}}{\partial t^2} = -\frac{n_0 q}{m} \nabla \cdot \tilde{E} + \frac{n_0 \nabla^2 \tilde{p}}{n_0 m}$ Isothermal





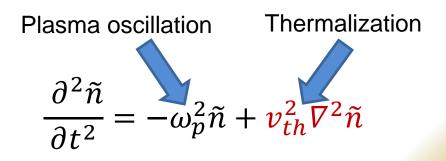






Plasma oscillations are too fast to be screened

Plasma response is trying to screen test charge



Plasma oscillations are too fast to be screened

Including a non-zero temperature changes the dispersion relationship

Now particles can be screened, depending on the frequency of the wave with respect to the plasma wave frequency \tilde{n} $\frac{\partial t^2}{\partial t^2} = -\omega_p^2 \tilde{n} + v_{th}^2 \nabla^2 \tilde{n}$

Summary of waves in plasmas

- Plasma wave (no B-field necessary) in a cold plasma
 - lons are stationary
- Wave-particle interaction
- Plasma wave in non-cold plasma
- MHD waves (B-field)
 - Perpendicular to the B-field
 - Parallel to the B-field

Simple MHD waves : B-field is included

	$ abla \cdot u = 0$	$ abla \cdot u eq 0$	
$\boldsymbol{k} = k \widehat{\boldsymbol{x}}$	Shear Alfven	Acoustic	Parallel propagation
$\boldsymbol{k} = k \hat{\boldsymbol{z}}$		Magnetosonic	Perpendicular propagation

Wave propagation in direction of magnetic field and incompressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \mathbf{v} = 0$

Wave propagation in direction of magnetic field and incompressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \mathbf{v} = 0$

$$\rho_0 \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} = \nabla \left(\widetilde{p} + \frac{\widetilde{B}^2}{8\pi} \right) + \boldsymbol{B_0} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4\pi} \qquad \qquad \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t} = -\boldsymbol{B_0} \cdot \nabla \widetilde{\boldsymbol{v}}$$

Wave propagation in direction of magnetic field and incompressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \boldsymbol{v} = 0$

$$\rho_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} = \nabla \left(\widetilde{p} + \frac{\widetilde{B}^{2}}{8\pi} \right) + \boldsymbol{B}_{0} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4\pi} \qquad \qquad \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t} = -\boldsymbol{B}_{0} \cdot \nabla \widetilde{\boldsymbol{v}}$$
$$\nabla \cdot \left(\rho_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} = \nabla \left(\widetilde{p} + \frac{\widetilde{B}^{2}}{8\pi} \right) + \boldsymbol{B}_{0} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4\pi} \right)$$

Wave propagation in direction of magnetic field and incompressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \boldsymbol{v} = 0$

$$\begin{split} \rho_0 \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} &= \nabla \left(\widetilde{\boldsymbol{p}} + \frac{\widetilde{\boldsymbol{B}}^2}{8\pi} \right) + \, \boldsymbol{B_0} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4\pi} & \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t} = -\boldsymbol{B_0} \cdot \nabla \widetilde{\boldsymbol{v}} \\ \nabla \cdot \left(\rho_0 \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} = \nabla \left(\widetilde{\boldsymbol{p}} + \frac{\widetilde{\boldsymbol{B}}^2}{8\pi} \right) + \, \boldsymbol{B_0} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4\pi} \right) \\ \rho_0 \frac{\partial \, \nabla \cdot \widetilde{\boldsymbol{v}}}{\partial t} &= \nabla^2 \left(\widetilde{\boldsymbol{p}} + \frac{\widetilde{\boldsymbol{B}}^2}{8\pi} \right) + \, \boldsymbol{B_0} \cdot \frac{\nabla \nabla \cdot \widetilde{\boldsymbol{B}}}{4\pi} \end{split}$$

Wave propagation in direction of magnetic field and incompressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \boldsymbol{v} = 0$

$$\begin{split} \rho_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} &= \nabla \left(\tilde{p} + \frac{\tilde{B}^{2}}{8\pi} \right) + \boldsymbol{B}_{0} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4\pi} & \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t} = -\boldsymbol{B}_{0} \cdot \nabla \widetilde{\boldsymbol{v}} \\ \nabla \cdot \left(\rho_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} = \nabla \left(\tilde{p} + \frac{\tilde{B}^{2}}{8\pi} \right) + \boldsymbol{B}_{0} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4\pi} \right) \\ \rho_{0} \frac{\partial \nabla \cdot \widetilde{\boldsymbol{v}}}{\partial t} &= \nabla^{2} \left(\tilde{p} + \frac{\tilde{B}^{2}}{8\pi} \right) + \boldsymbol{B}_{0} \cdot \frac{\nabla \nabla \cdot \widetilde{\boldsymbol{B}}}{4\pi} & \left(\tilde{p} + \frac{\tilde{B}^{2}}{8\pi} = 0 \right) \end{split}$$

Wave propagation in direction of magnetic field and incompressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \mathbf{v} = 0$ $\tilde{p} + \frac{\tilde{B}^2}{8\pi} = 0$

Wave propagation in direction of magnetic field and incompressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \mathbf{v} = 0$ $\tilde{p} + \frac{\tilde{B}^2}{8\pi} = 0$

Linearized equations in 1D:

$$\rho_0 \frac{\partial \tilde{v}}{\partial t} = \nabla \left(\tilde{p} + \frac{\tilde{B}^2}{8\pi} \right) + \frac{B_0}{4\pi} \frac{\partial \tilde{B}}{\partial z} \qquad \qquad \frac{\partial \tilde{B}}{\partial t} = -B_0 \frac{\partial \tilde{v}}{\partial z}$$

Wave propagation in direction of magnetic field and incompressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \mathbf{v} = 0$ $\tilde{p} + \frac{\tilde{B}^2}{8\pi} = 0$

Linearized equations in 1D:

$$\rho_0 \frac{\partial \tilde{v}}{\partial t} = \nabla \left(\tilde{p} + \frac{\tilde{B}^2}{8\pi} \right) + \frac{B_0}{4\pi} \frac{\partial \tilde{B}}{\partial z} \qquad \qquad \frac{\partial \tilde{B}}{\partial t} = -B_0 \frac{\partial \tilde{v}}{\partial z}$$

$$\frac{\partial^2 \tilde{v}}{\partial t^2} = \frac{B_0^2}{4\pi\rho_0} \frac{\partial^2 \tilde{v}}{\partial z^2}$$
$$\frac{\nu_A^2}{\nu_A^2}$$

Wave propagation in direction of magnetic field and incompressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \mathbf{v} = 0$ $\tilde{p} + \frac{\tilde{B}^2}{8\pi} = 0$

The wave is the result of Magnetic tension:

 $\frac{B/4\pi}{\rho_0/B} \qquad \begin{array}{c} \text{tension-in-line} \\ \text{mass-per-line} \end{array}$

It is a little bit like 'plucking': $B_0 \perp \tilde{v}$

Wave propagation in direction of magnetic field and compressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \mathbf{v} \neq 0$

Wave propagation in direction of magnetic field and compressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \mathbf{v} \neq 0$

$$\rho_0 \frac{\partial \tilde{\boldsymbol{v}}}{\partial t} = \frac{\partial \tilde{p}}{\partial z} - \frac{\partial}{\partial z} B_0 \tilde{B} / 4\pi + \frac{\partial}{\partial z} B_0 \tilde{B} / 4\pi \qquad \frac{\partial \tilde{B}_z}{\partial t} = \frac{B_0 \partial \tilde{\boldsymbol{v}}}{\partial z} - \frac{B_0 \partial \tilde{\boldsymbol{v}}}{\partial z}$$

Wave propagation in direction of magnetic field and compressible

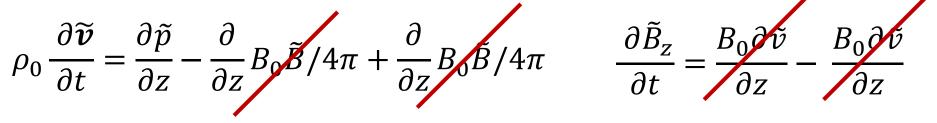
Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \mathbf{v} \neq 0$

$$\rho_0 \frac{\partial \tilde{v}}{\partial t} = \frac{\partial \tilde{p}}{\partial z} - \frac{\partial}{\partial z} B_0 \tilde{B} / 4\pi + \frac{\partial}{\partial z} B_0 \tilde{B} / 4\pi \qquad \frac{\partial \tilde{B}_z}{\partial t} = \frac{B_0 \partial \tilde{v}}{\partial z} - \frac{B_0 \partial \tilde{v}}{\partial z}$$

Wave propagation in direction of magnetic field and compressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \mathbf{v} \neq 0$

Linearized equations (and jumping a few steps):



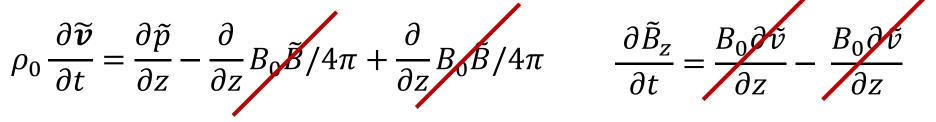
Link pressure to density and use continuity equation + math:

$$\frac{\partial^2 \tilde{\rho}}{\partial t^2} = \frac{\gamma p_0}{\rho_0} \frac{\partial^2 \tilde{\rho}}{\partial z^2}$$

Wave propagation in direction of magnetic field and compressible

Assumption: $\mathbf{k} = k\hat{\mathbf{z}}$ $\nabla \cdot \mathbf{v} \neq 0$

Linearized equations (and jumping a few steps):



Link pressure to density and use continuity equation + math:

$$\frac{\partial^2 \tilde{\rho}}{\partial t^2} = \frac{\gamma p_0}{\rho_0} \frac{\partial^2 \tilde{\rho}}{\partial z^2}$$

$$\frac{\partial^2 \tilde{\rho}}{\partial z^2}$$

Wave propagation perpendicular to the magnetic field and compressible

Assumption: $\mathbf{k} = k \hat{\mathbf{x}}$ $\nabla \cdot \mathbf{v} \neq 0$

Wave propagation perpendicular to the magnetic field and compressible

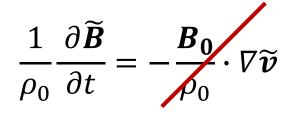
Assumption: $\mathbf{k} = k \hat{\mathbf{x}}$ $\nabla \cdot \mathbf{v} \neq 0$

$$\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} = \frac{1}{\rho_0} \nabla \left(\widetilde{p} + \frac{\widetilde{B}^2}{8\pi} \right) + \frac{\boldsymbol{B_0}}{\rho_0} \cdot \frac{\nabla \widetilde{B}}{4\pi} \qquad \qquad \frac{1}{\rho_0} \frac{\partial \widetilde{B}}{\partial t} = -\frac{\boldsymbol{B_0}}{\rho_0} \cdot \nabla \widetilde{\boldsymbol{v}}$$

Wave propagation perpendicular to the magnetic field and compressible

Assumption: $\mathbf{k} = k \hat{\mathbf{x}}$ $\nabla \cdot \mathbf{v} \neq 0$

$$\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t} = \frac{1}{\rho_0} \nabla \left(\widetilde{p} + \frac{\widetilde{B}^2}{8\pi} \right) + \frac{\boldsymbol{B_0}}{\rho_0} \cdot \frac{\boldsymbol{v} \widetilde{B}}{4\pi}$$



Wave propagation perpendicular to the magnetic field and compressible

Assumption: $\mathbf{k} = k \hat{\mathbf{x}}$ $\nabla \cdot \mathbf{v} \neq 0$

$$\frac{\partial \tilde{v}}{\partial t} = \frac{1}{\rho_0} \nabla \left(\tilde{p} + \frac{\tilde{B}^2}{8\pi} \right) + \frac{B_0}{\rho_0} \frac{\nabla \tilde{B}}{4\pi}$$
$$\frac{dB/\rho}{dt} = 0 \qquad \tilde{B} = \frac{B_0 \tilde{\rho}}{\rho_0}$$

$$\frac{1}{\rho_0} \frac{\partial \widetilde{B}}{\partial t} = -\frac{B_0}{\rho_0} \cdot \nabla \widetilde{v}$$

Wave propagation perpendicular to the magnetic field and compressible

Assumption: $\mathbf{k} = k \hat{\mathbf{x}}$ $\nabla \cdot \mathbf{v} \neq 0$

$$\frac{\partial \tilde{v}}{\partial t} = \frac{1}{\rho_0} \nabla \left(\tilde{p} + \frac{\tilde{B}^2}{8\pi} \right) + \frac{B_0}{\rho_0} \cdot \frac{\nabla \tilde{B}}{4\pi}$$
$$\frac{dB/\rho}{dt} = 0 \qquad \tilde{B} = \frac{B_0 \tilde{\rho}}{\rho_0}$$
Thermal Magnetic
$$\frac{\partial \tilde{v}}{\partial t} = \frac{1}{\rho_0} \nabla (\tilde{p}_T + \tilde{p}_B)$$

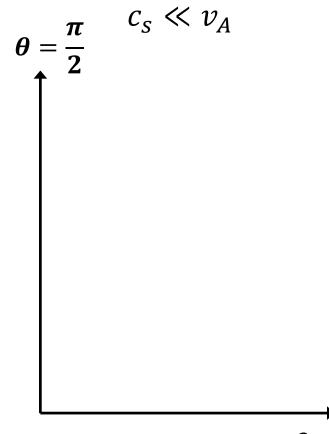
$$\frac{1}{\rho_0} \frac{\partial \widetilde{B}}{\partial t} = -\frac{B_0}{\rho_0} \cdot \nabla \widetilde{v}$$

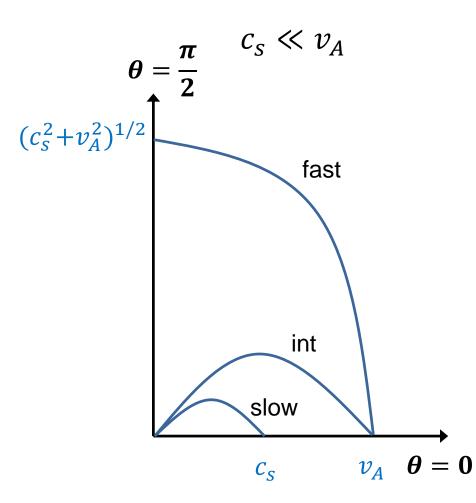
Wave propagation perpendicular to the magnetic field and compressible

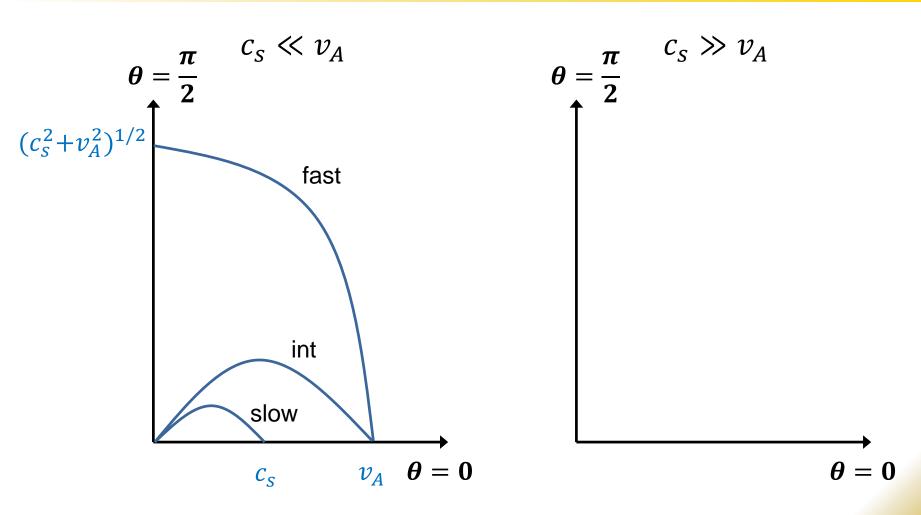
Assumption: $\mathbf{k} = k \hat{\mathbf{x}}$ $\nabla \cdot \mathbf{v} \neq 0$

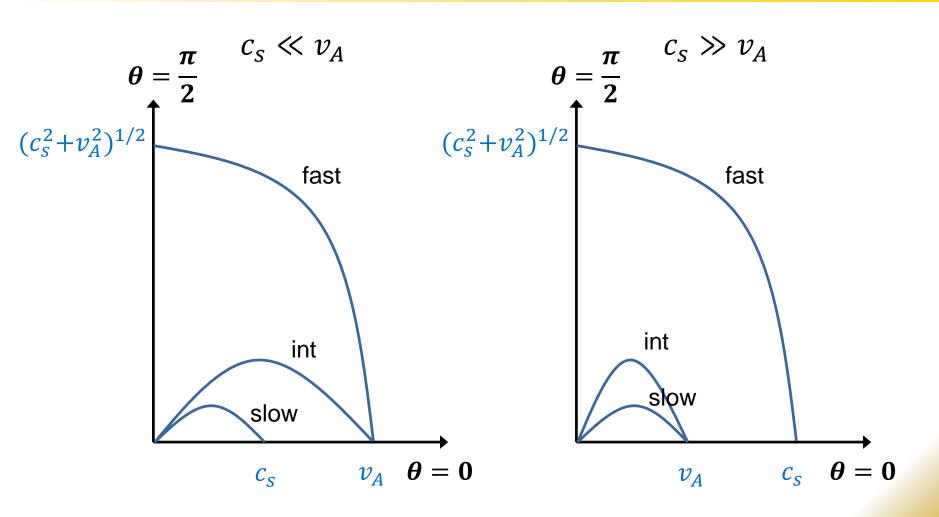
Simple MHD waves : B-field is included

	$ abla \cdot u = 0$	$ abla \cdot u eq 0$	
$\boldsymbol{k} = k \widehat{\boldsymbol{x}}$	Shear Alfven	Acoustic	Parallel propagation
$\boldsymbol{k} = k \hat{\boldsymbol{z}}$		Magnetosonic	Perpendicular propagation









Summary of waves in plasmas

- Langmuir wave
 - Electron and Ions are cold
 - Electrons are not cold
 - Use as a diagnostic
- Waves can exchanges energy with particles and vice-versa
- MHD waves
 - Shear Alfven wave
 - Acoustic Wave
 - Magnetosonic Wave