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1. Introduction

1.1. Statement of the problem

Magnetic reconnection is the change in magnetic-field topology 
that enables phenomena such as solar flares and coronal mass 
ejections, substorms in the Earth’s magnetic field and the 

sawtooth and tearing instabilities in magnetic-confinement 
fusion [1–3]. Any such topological reconfiguration requires 
the breaking of the frozen-flux constraint of ideal MHD. 
Understanding the detailed physics of how this happens, and 
the ensuing energetics and dynamics of the plasma as recon-
nection occurs, is the goal of the investigations in this topic.
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Abstract
Magnetic reconnection is the topological reconfiguration of the magnetic field in a plasma, 
accompanied by the violent release of energy and particle acceleration. Reconnection is as 
ubiquitous as plasmas themselves, with solar flares perhaps the most popular example. Other 
fascinating processes where reconnection plays a key role include the magnetic dynamo, 
geomagnetic storms and the sawtooth crash in tokamaks.

Over the last few years, the theoretical understanding of magnetic reconnection in 
large-scale fluid systems has undergone a major paradigm shift. The steady-state model 
of reconnection described by the famous Sweet–Parker (SP) theory, which dominated the 
field for  ∼50 years, has been replaced with an essentially time-dependent, bursty picture 
of the reconnection layer, dominated by the continuous formation and ejection of multiple 
secondary islands (plasmoids). Whereas in the SP model reconnection was predicted to be 
slow, a major implication of this new paradigm is that reconnection in fluid systems is fast 
(i.e. independent of the Lundquist number), provided that the system is large enough. This 
conceptual shift hinges on the realization that SP-like current layers are violently unstable to 
the plasmoid (tearing) instability—implying, therefore, that such current sheets are super-
critically unstable and thus can never form in the first place. This suggests that the formation 
of a current sheet and the subsequent reconnection process cannot be decoupled, as is 
commonly assumed.

This paper provides an introductory-level overview of the recent developments in 
reconnection theory and simulations that led to this essentially new framework. We briefly 
discuss the role played by the plasmoid instability in selected applications, and describe some 
of the outstanding challenges that remain at the frontier of this subject. Amongst these are 
the analytical and numerical extension of the plasmoid instability to (i) 3D and (ii) non-
magnetohydrodynamics (MHD) regimes. New results are reported in both cases.
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An important figure  of merit in the characterisation 
of reconnection environments is the Lundquist number, 
S LV / mA χ= , where L is the scale length characteristic of the 
reconnecting field B0 (typically identified with the system 
size), V B / 4A 0 πρ=  is the corresponding Alfvén speed (ρ is 
the plasma’s mass density) and c / 4m

2 ( )χ πσ=  is the magnetic 
diffusivity, with σ the electrical conductivity of the plasma.  
In typical solar coronal conditions, S ∼1012–1014; in the 
Earth’s magnetotail, S ∼1015–1016; in a modern tokamak such 
as JET, S ∼106–108. The fact that these are rather large num-
bers means that indeed frozen flux ought to be a very good 
approximation; the common understanding is that the occur-
rence of magnetic reconnection thus requires the formation 
of highly localised regions of very intense currents—current 
sheets or, in some models, X-points—where nonideal effects 
can (and must) become important. The simplest of such effects 
is the plasma resistivity; others are electron inertia and finite 
electron Larmor radius terms.

A wide variety of observations of reconnection events are 
characterised by three fundamental aspects: (i) Fast reconnec-
tion—the rates of energy release are in the range  ∼0.01–0.1 
V L/A  for most systems, seemingly independent of the magni-
tude of the frozen-flux breaking terms. (ii) Two timescales—
the reconnection stage proper (explosive) is preceded by 
a much slower stage of energy accumulation; the transition 
between the two stages is generally referred to as the recon-
nection trigger. (iii) Efficient energy conversion—magnetic 
reconnection is, essentially, a mechanism for efficiently con-
verting magnetic energy of the reconnecting fields into bulk 
plasma heating, supra-thermal particle acceleration, and 
kinetic energy of the reconnection outflows3.

A complete understanding of magnetic reconnection per-
force must describe these three different aspects. However, 
despite roughly 60 years of very active research, one is forced 
to admit that such an understanding continues to elude us in 
even the simplest plasma description that allows for reconnec-
tion (resistive MHD). This paper is an attempt at overviewing 
a recent development in the field—the plasmoid instability 
and ensuing plasmoid-dominated reconnection—that, we 
believe, has brought us closer to a solution.

Motivated by the ubiquity of plasmoids in magnetic recon-
nection, and given the wide variety of phenomena in which 
reconnection itself plays a fundamental role, we aim in this 
paper to provide an accessible discussion of the plasmoid 
instability and dynamics, and some associated developments, 
to non-expert readers. It is, however, not a review paper of 
plasmoid-mediated reconnection; the selection of topics that 
we cover is guided by our personal interests and is manifestly 
incomplete.

In addition, this paper also includes some new results: sec-
tion 4.3 reports preliminary studies of the plasmoid instability 

in 3D geometries, and, in section 4.4, we present an analytical 
extension of the plasmoid instability to two new semi-kinetic 
regimes which we think should be of direct applicability to lab-
oratory reconnection experiments as well as to the solar corona.

1.2. The Sweet–Parker model

The first serious attempt at describing magnetic reconnection 
was due to Peter Sweet [11] and Eugene Parker [12], giving 
rise to what came to be known as the Sweet–Parker (SP) 
model. They conceptualized a current sheet as a steady-state 
channel of length L and thickness SPδ , through which plasma 
flows in incompressible fashion, with velocity uin upstream 
and uout downstream. Using simple dimensional arguments, 
Sweet and Parker were then able to show from the resistive 
MHD equations  that (i) u Vout A∼ , (ii) u u S/in out

1/2∼ − , (iii) 
L S/SP

1/2δ ∼ − . These relationships imply that the electric field 
set up by the reconnection process, i.e. the rate of change of 
the magnetic flux, is cE V B SA 0

1/2= − , or, equivalently, that 
the reconnection rate, u L/rec

1
inτ =− , is given by S/A rec

1/2τ τ ∼ − , 
where L V/ AAτ =  is the Alfvén time.

Given the rather large values of the Lundquist number that 
one tends to encounter in nature, the S−1/2scaling predicted by 
the SP model is clearly insufficient to explain the observed 
reconnection rates. For example, in typical solar-corona con-
ditions, 0.5Aτ ≈  s, leading to the prediction that a typical 
solar flare should last  ∼2 months, in stark contrast with the 
observed duration of 15 minutes to  ∼1 h. Similarly unsatis-
factory predictions are obtained for reconnection events in 
almost all plasmas that one cares to examine.

1.3. Petschek’s solution

The SP model’s inability to yield faster reconnection rates 
stems directly from the very large aspect ratio of the cur-
rent sheet that this model predicts. An important attempt to 
circunvent this difficulty is due to Harry Petschek in 1964 
[13] (later revisited and amended by Russell Kulsrud [14]). 
Petschek’s solution relies on shortening the length of the cur-
rent sheet at the expense of four standing slow-mode shocks 
emanating from a central diffusion region. His model yields 
only a logarithmic dependence of the reconnection rate on S, 
i.e. Petschek reconnection is fast (in some cases, it is in fact 
too fast).

Although this was encouraging, the absence of a justifi-
cation for the origin of the shocks, and other non-rigorous 
assumptions invoked in the derivation, place the Petschek 
model on somewhat less firm grounds than the SP model. 
And indeed, direct numerical MHD simulations of recon-
nection have failed to exhibit Petschek’s solution [8, 15–18], 
even if it is used as the initial condition [17]—instead, those 
simulations, and many others at moderately large values of 
the Lundquist number, S 104� , reproduce all features of the 
SP model rather well, as long as uniform, or smoothly var-
ying (e.g. Spitzer), resistivities are employed—a conclusion 
that has been corroborated by dedicated experiments [19]. A 
noteworthy exception to this statement arises when strongly 

3  For the sake of clarity, it is important to mention at this stage that the 
above description specifically refers to strongly unstable reconnecting 
systems, or to systems which have the potential to become strongly unstable. 
Noteworthy exceptions are weakly unstable tearing modes (i.e. low ∆′) [4–9] 
and neo-classical tearing modes in tokamaks [10], for example, where the 
nonlinear stage is a slow, diffusive process. This paper exclusively deals 
with the strongly unstable case.

Plasma Phys. Control. Fusion 58 (2016) 014021



N F Loureiro and D A Uzdensky 

3

localized resistivity profiles are used (motivated by attempts 
to incorporate kinetic effects into the MHD description, e.g. 
kinetic-scale instabilities that may give rise to micro-turbu-
lence localised to the current sheet and thus anomalously 
enhance the resistivity there [20–22]). Then, numerical sim-
ulations do exhibit Petschek-like configurations [18, 23–28]. 
One question that then arises, of course, is how well-justified 
such anomalous resistivity models are; addressing this con-
cern, however, requires (potentially 3D) fully kinetic simu-
lations capable of reproducing MHD length-scales, a feat 
which is beyond current computational capabilities.

A more fundamental question that follows is whether 
fast reconnection is excluded from a pure MHD description. 
Addressing this question is the central aim of this paper.

1.4. Sweet–Parker revisited

The absence of solid numerical support for the Petschek model 
as a valid MHD solution prompts us to reassess the assump-
tions on which the SP model is based, and ask whether these 
are expected to hold in the reconnection environments typi-
cally found in nature. Perhaps first and foremost is the validity 
of MHD itself: for example, the magnetotail collisions are 
so rare that kinetic scale effects are bound to become impor-
tant, rendering MHD insufficient. Similar observations can be 
made for reconnection in modern magnetic fusion devices and 
a wide variety of astrophysical and space environments [29]. 
But there are certainly physical contexts where one expects 
MHD to hold and, simultaneously, either observes or infers 
that fast reconnection must be happening [29, 30]. Examples 
of such contexts are the solar chromosphere (and even perhaps 
the solar corona in some cases [31]), the ISM, and inside stars 
and accretion disks (see also section 3.2). Can the SP model 
be wrong, or somehow inapplicable? Two major assumptions 
invoked in the derivation of the SP model are that (i) the back-
ground plasma is laminar, and (ii) a steady-state solution is 
realisable in practice, or, in other words, that the reconnec-
tion geometry central to the SP analysis (the current sheet) is 
stable. Do these assumptions hold?

1.4.1. Background turbulence. Background turbulence is 
indubitably present in many plasmas where reconnection takes 
place [32], and one may legitemately wonder if its presence 
significantly affects reconnection. In particular, how does back-
ground turbulence change the predictions of the SP model?

This question was first raised in the pioneering numerical 
investigations of Matthaeus and Lamkin in 1986 [33]. This 
study revealed many features strongly suggestive of the inad-
equacy of a steady-state analysis of the reconnection layer but, 
given the very limited numerical resolution then available, it 
was unclear whether turbulence could significantly speed up 
reconnection.

Several years later, the influence of background turbulence 
on reconnection was analysed theoretically in the landmark 
paper of Lazarian and Vishniac [34] (hereafter LV99). The 
main conclusion of this work was that, in the presence of back-
ground turbulence, MHD reconnection should become fast, 
independent of S, but that 3D effects were crucial to achieve 

this (which would have precluded Matthaeus and Lamkin [33] 
from observing an enhancement of the reconnection rate due 
to turbulence because their simulations were 2D).

The subsequent advent of massively parallel computing 
enabled the first attempt at the direct numerical testing of 
the LV99 model [35] in 3D simulations. The limits set by the 
available computing power dictated a maximum value of the 
Lundquist number S  =  2000, not sufficiently large to allow 
the desirable asymptotic scale separation between the system 
size (set by the large-scale reconnecting magnetic field), the 
energy injection scale (i.e. the turbulence forcing scale), the 
width of the initial current sheet (an SP sheet) and the resistive 
and viscous turbulence dissipation scales. Modulo these con-
straints, [35] reported a confirmation of several predictions of 
LV99, including, importantly, the increase in the reconnection 
rate to S-independent values.

Simultaneously, [30] undertook similar simulations but 
only in 2D, at values of the Lundquist number ranging up 
to S 1.5 104≈ × . Interestingly, they also reported fast recon-
nection; however, as mentioned above, such enhancement of 
the reconnection rate over the nominal SP value could not be 
attributed to the LV99 mechanism given its 2D nature. [30] 
conjectured instead that the reconnection speed-up that they 
observed may in fact be due to the breaking of the second 
assumption key to the SP model: rather than being steady-
state, the current sheet was actually strongly unstable to 
the formation of multiple plasmoids [36, 37], and the role 
of turbulence in this case was to facilitate the onset of this 
instability.

1.4.2. Instability of the current sheet. Numerical evidence for 
the instability of SP-like current sheets to secondary-island 
(plasmoid) formation was reported in the literature at least as 
early as 1984 [15, 38], and reiterated in subsequent numeri-
cal investigations [8, 16, 24, 39, 40]. Heuristic arguments put 
forth by Biskamp [16], based on earlier work by Bulanov 
et al [41], suggested that SP current sheets of aspect ratio 
exceeding  ∼100 (corresponding to S 104≈ ) would always be 
unstable to plasmoid formation. This argument thus hinted 
at the existence of a critical value of the Lundquist number, 
Sc, below which the SP model applies, and above which 
an instability appears. But the question of what happens in 
the asymptotic limit S Sc�  remained open: due to the lim-
ited computational power available, those simulations could 
only marginally exceed Sc, and no link could be established 
between the instability of the sheet and the reconnection rate. 
The nature of the instability itself was also unclear—what 
was the fastest growing unstable mode and the corresponding 
growth rate at asymptotically large values of the Lundquist 
number?

A separate, powerful, motivation to understand the struc-
tural stability of current sheets was also provided by kinetic 
particle-in-cell (PIC) simulations of reconnection, where 
plasmoid formation is observed and conjectured to play an 
important, perhaps critical, role in the process, from influ-
encing its rate and conferring reconnection in a bursty, rather 
than steady-state, character [42, 43], to enhancing the par-
ticle acceleration efficiency [44]. Naturally, the stability of 
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such fully kinetic current sheets (which is still not analyti-
cally understood, but see discussion in [45]) is determined by 
more complex physics than is the case for the MHD ones, but 
one may hope to at least gain qualitative insight from a better 
understanding of the fluid case.

2. The plasmoid instability

The arguments put forth in the previous section motivated a 
concerted analytical and numerical effort to investigate rigor-
ously the stability of SP-like current sheets at high values of 
the Lundquist number. In summary, such current sheets have 
been found to be violently unstable to the formation of mul-
tiple plasmoids, in what has come to be known as the plas-
moid instability (but can, in fact, be correctly thought of as 
the large ∆′ tearing instability [4, 46] of an equilibrium—the 
SP current sheet—whose characteristic scale is itself a func-
tion of resistivity: LSSP

1/2δ ∼ − ). It is now generally accepted 
that this instability radically changes MHD reconnection from 
the SP steady-state picture: plasmoid-mediated reconnection 
is intrinsically non-steady-state, bursty and fast. The main 
aspects of the linear and nonlinear stages of the plasmoid 
instability are reviewed next.

2.1. Linear stage

To compute analytically the linear instability of resistive-
MHD, incompressible, SP current sheets, Loureiro et al [36] 
resorted to standard tearing-mode techniques [4, 46]. They 
found a very violent instability, whose fastest growing mode 
had a wavenumber k L Smax

3/8∼  and corresponding growth 
rate of Smax A

1/4γ τ ∼ ; the width of the corresponding resistive 
boundary layer inside the (equilibrium) SP sheet on which the 
plasmoids are born is S/in SP

1/8δ δ ∼ − . These scalings for the 
wavenumber and growth rate were subsequently validated via 
numerical simulations [37, 47, 48].

In a non-rigorous, but rather convenient, fashion, the plas-
moid-instability scalings can be easily retrieved from the usual 
tearing-mode expressions by replacing the scale-length char-
acteristic of the background, tearing-unstable, equilibrium, 
a, with the thickness of the SP sheet, i.e. a LSSP

1/2→ δ ∼ −   
[37, 49]4. We note that it is not a priori obvious that this pro-
cedure should yield correct results because an SP sheet dif-
fers from the equilibria considered in the standard tearing 
analysis in that it contains sheared differential inflows and 
outflows. However, the fact that the growth rate of the plas-
moid instability is super-Alfvénic justifies the neglect of such 
terms [36, 37]. This useful observation allows the straightfor-
ward derivation of the plasmoid instability scalings in other 
plasma regimes of interest. For example, the large magnetic 
Prandtl number case is treated in [37]; and, in section 4.4 of 
this paper, we obtain scalings for semi-kinetic regimes in a 
similar fashion.

The original analysis of the plasmoid instability [36] 
was essentially one-dimensional, in the sense that it did not 
address the effects of the dependence of the upstream mag-
netic field on the outflow coordinate, i.e. the theory rigor-
ously applied only to a restricted vicinity of the centre of the 
sheet. It also did not allow for any variation in the out-of-
plane direction. The former limitation has been tackled in 
[37], where the analytical plasmoid calculation of [36] has 
been generalised to a fully 2D SP-like equilibrium. It is found 
that, under very general circumstances, the wave-number 
and growth rate of fastest growing mode actually increase 
along the sheet and, remarkably, that there is a location 
(the Alfvén Mach point) where the plasmoid instability is 
replaced by the Kelvin-Helmholtz (KH) instability, with the 

scalings S k L S,Amax
KH 1/2

max
KH 1/2 γ τ ∼ ∼  in the inviscid limit, and 

S Pm k L S Pm,Amax
KH 1/2 3/4

max
KH 1/2 1/4 γ τ ∼ ∼− −  in the limit Pm 1� . 

To the best of our knowledge, this prediction has not yet been 
confirmed in direct numerical simulations (we speculate 
that this could be because triggering the KH instability may 
require even higher values of the Lundquist number than the 
S 10c

4∼  required for the plasmoid instability).
With regard to 3D effects, these have been considered 

by Baalrud et al [51], who conclude that the most unstable 
modes are oblique, i.e. they align themselves at an angle 
between the reconnecting field and the out-of-plane (guide-) 
field (though the S dependence of the scalings is not affected 
by this).

2.2. Nonlinear stage

The linear theory of the plasmoid instability is valid for as 
long as w Sin SP

1/8δ δ∼ −� , where w is the width of the plas-
moid chain [36, 37]. However, in order to affect the reconnec-
tion process significantly, plasmoids have to become wider 
than the original SP sheet. In other words, understanding the 
effect of plasmoids on reconnection requires understanding 
their nonlinear evolution. This can be expected to be rather 
complex, even chaotic [52]. In principle, nonlinear plasmoid 
dynamics should be determined by the balance between the 
following processes: (i) nonlinear growth via reconnected 
flux accumulating in the plasmoids, (ii) advection along 
and ejection out of the sheet by the large-scale, background, 
sheared, Alfvénic reconnection outflows, (iii) coalescence 
(mergers of plasmoids with each other) and (iv) plasmoid 
saturation. Secondary current sheets are expected to form 
between neighbouring plasmoids; these current sheets will 
themselves be susceptible to the plasmoid instability if the 
local Lundquist number (defined for each sheet in terms 
of its length) exceeds Sc. This gives rise to a hierarchical, 
fractal-like structure [53] which ends when the length of the 
inter-plasmoid current sheet is such that the local Lundquist 
number is  ∼Sc. Thus, at any given moment in time, one 
should expect the reconnection layer to be a stochastic plas-
moid chain, with a distribution of plasmoids of different 
sizes and fluxes, and a total number of plasmoids given by 
N L L/ c∼  (see [54]).

4  It has recently been brought to our attention by Shibata that this particular 
way of deriving the plasmoid instability scalings was already known quite 
some time ago—see problem 3–6 of [50].
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A statistical theory including all these different ingredients 
was proposed by Uzdensky et al. [55]. It made three main pre-
dictions: (i) the effective (time-averaged) reconnection rate is 
determined by the SP model applied to the current sheets at the 
bottom of the plasmoid hierarchy, i.e. E cE V B S/ ceff eff A 0

1/2˜ ( )≡ ∼
—note that this is fast since it does not depend on the global 
Lundquist number; (ii) the plasmoid size and flux distribution 
functions are, respectively, f w w 2( )∝ −  and f 2( )ψ ψ∝ − ; (iii) 
abnormally large (monster) plasmoids should form occasion-

ally, with widths roughly w E Leff
1/2˜∼ .

Existing high-Lundquist number simulations [49, 56, 57] 
confirm these predictions, although the distribution functions 
have been found to be more complex than originally thought: 
while the numerical data is in good agreement with the pre-
dicted  −2 slope of the distribution function for plasmoids 
exceeding a certain flux/width threshold, below that threshold 
the slope is shallower than  −2, and is instead consistent with 
a  −1 power law index [58]. Explanations for this transition 
in the spectra have been put forth [57, 58]. A detailed dis-
cussion of this issue is beyond the scope of this paper; it is 
however worth adding that a firm grasp of the expected plas-
moid distribution function is directly relevant to the problem 
of particle acceleration in reconnection [44, 59–61], although 
this requires going beyond the (2D) MHD description, as does 
the detailed interpretation of observations and experiments 
[62–64]. Other physical contexts in which the details of the 
plasmoid distribution function may matter are discussed in 
section 3.2.

Another point worth making concerns the prediction of 
the occasional formation of monster plasmoids. In essence, 
their existence requires a reconnecting plasmoid chain that 
has a flow stagnation point close to its geometric center. We 
note that this prescription is not exclusive to MHD, i.e. fully 
kinetic (PIC) simulations of reconnection share this property 
[44, 45, 65]. Thus, we see no a priori reason why monsters 
should not also exist in kinetic environments (with an even 
larger size, since the reconnection rate in a kinetic plasmoid 
chain is roughly a factor of 10 larger than its MHD coun-
terpart, on the basis of the available numerical evidence). 
Numerical work corroborating this possibility has recently 
appeared [66].

Finally, we note that the plasmoid instability provides a 
very natural way to trigger a transition to kinetic physics in 
reconnecting systems where, on the basis of the SP model, one 
would previously have predicted MHD to be a valid descrip-
tion. Indeed, even if ion kinetic scales are smaller than SPδ , 
it may still be the case that they exceed the width of the crit-
ical sheet, L Sc c c

1/2δ ∼ − , at which point a transition to kinetic 
reconnection will be triggered [29, 55, 67–70]. The transition 
criterion is easily obtained: taking the relevant ion scale to 
be sρ , for example, one finds that c sδ ρ∼  implies S S L /c s

1/2 ρ∼ , 
i.e. in systems such that S is larger than the value yielded by 
this expression, c sδ ρ<  and thus the cascade to small scales 
induced by the plasmoid instability will trigger a transition to 
a kinetic regime (and vice-versa).

3. The plasmoid instability in context

Over the last few years, the plasmoid instability has been dis-
cussed in a wide variety of contexts, ranging from magneti-
cally confined laboratory plasmas to very diverse space and 
astrophysical phenomena. One of its most direct applications 
has been solar flares, where there are many observational 
reports of plasmoid-like features (e.g. [62, 71–73]; see [37] 
for further references on this and other contexts), supported 
by direct numerical simulations (e.g. [74–78]). The aim of 
this section  is to underscore the fundamental role played by 
plasmoids in a few other applications where this is not yet, 
perhaps, as widely appreciated.

3.1. Plasmoids in tokamaks

Magnetically confined fusion experiments—tokamaks in par-
ticular, but not only—are prone to a variety of instabilities 
where reconnection plays a fundamental role: the sawtooth and 
(classic, neoclassic and micro) tearing modes, resonant magnetic 
perturbations and (probably) edge localized modes (ELMs) are 
a few important examples. Recent research has underscored the 
importance of plasmoids in two of these phenomena: the saw-
tooth instability and resonant magnetic perturbations. We briefly 
describe these results in the following paragraphs.

3.1.1. Sawtooth instability. The periodic relaxation of the tem-
perature in the core of tokamaks—which results in a temporal 
evolution of the core temperature displaying a characteristic 
sawtooth-like pattern—is one of the earliest observed instabili-
ties in such devices [3, 79]. A very elegant attempt to describe 
it was proposed by Kadomtsev [80]. His explanation involves 
the following key steps: (i) an externally imposed electric field 
drives the toroidal current in the plasma, which in turn Ohmi-
cally heats the plasma; (ii) as the electron temperature (Te) thus 
increases, the plasma resistivity (η) decreases ( Te

3/2η∝ − ); (iii) 
to maintain the externally imposed electric field, Ohm’s law 
η=E j requires that the current in the plasma increases to 

compensate for the decrease in resistivity; (iv) raising the cur-
rent leads to a lowering of the safety profile (q) in the core; (v) 
if q in the core becomes less than one, an internal kink mode 
is triggered; this then drives reconnection at the q  =  1 surface; 
(vi) reconnection at this surface proceeds according to the SP 
model, the hot core plasma mixes with the colder plasma found 
at radial locations r  >  r1 (where r1 is the radial location of the 
q  =  1 surface), resulting in a lower value of Te in the (new) 
core; (vii) the cycle repeats for as long the external electric 
field is on, resulting in the sawtooth pattern.

Sadly, the understanding gathered over the years, theo-
retically, computationally and experimentally, has established 
beyond doubt that Kadomtsev’s model provides an insuffi-
cient explanation of the sawtooth instability (and may even 
be incompatible with some observations) [3, 79]. Perhaps not 
surprisingly, the first problem that was identified was the mod-
el’s inability to reproduce the timescale of the crash phase, 
identified with the reconnection stage in the model. This is 
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simply an extension to the sawtooth instability of the problem 
faced by the SP model in almost all other contexts to which 
one choses to apply it: SP reconnection is too slow (taking 
JET as a specific example, sawtooth crash times are  ∼100 μs, 
whereas Kadomtsev’s model yields  ∼10 ms).

In view of the foregoing discussion on the plasmoid insta-
bility, it is a straightforward conjecture that the SP-like current 
layers envisaged in Kadomsev’s sawtooth model (which form 
in the nonlinear evolution of the kink mode) may in fact not 
be stable—one may legitimately expect them to be suscep-
tible to the plasmoid instability, break into many plasmoids 
and undergo fast (independent of S) reconnection. Very recent 
computational work by Yu et al [81] has shown exactly this. Of 
course, it has to be added that MHD is an insufficient descrip-
tion of the sawtooth cycle in modern tokamaks and that, while 
the sawtooth crash may involve plasmoid formation [82], its 
full understanding remains a mystery.

3.1.2. Error fields and resonant magnetic perturbations: the 
Taylor problem. A well-known paradigm to investigate error 
fields (small amplitude deviations from the idealized magnetic 
equilibria) and resonant magnetic perturbations in tokamaks 
was proposed by J. B. Taylor [83]; the basic idea is to inves-
tigate how small-amplitude perturbations imposed far away 
from a tearing-stable rational layer drive reconnection at that 
layer (hence the term forced, or driven, to characterize the 
reconnection events that arise in this way)—we refer the inter-
ested reader to [84] for a clear description of the problem and 
overview of relevant work in this topic.

Until very recently, the accepted theoretical understanding 
of what came to be known as the Taylor problem comprised 
two different regimes: (i) Hahm-Kuslrud [83] and (ii) Wang-
Bhattacharjee [85]. In the former, reconnection is very slow—
the nonlinear stage is well-described by Rutherford’s theory [5]; 
in the latter, an SP current sheet forms in the nonlinear regime 
[8, 86] and, consequently, reconnection is faster (but, of course, 
not fast). Which scenario is followed (by a given perturbation) 
is essentially a function of the perturbation’s amplitude: smaller 
perturbations conform to the theory of Hahm and Kulsrud, larger 
perturbations to that of Wang and Bhattacharjee.

In view of what has been learned about the unforced case,  
it could be expected that a third regime may exist—one in which 
the nonlinear current sheet, as it is formed, becomes unstable 
to plasmoids, thus replacing the Wang-Bhattacharjee scenario 
with one governed by plasmoid-induced fast reconnection.

This possibility has indeed been posited in recent analytical 
work by Dewar et al [87] and subsequently demonstrated in 
numerical work by Comisso and co-workers [84, 88]. The cal-
culations by these authors suggest that the perturbation ampli-
tudes required to reach this new scenario are small enough to 
be experimentally relevant.

3.2. Plasmoids in high-energy-density astrophysical  
phenomena

Several important astrophysical phenomena, most notably the 
magnetospheres of magnetars and central engines of gamma-
ray bursts (GRBs) and supernovae, take place in environments 

with such a high energy density and, in particular, with such a 
strong magnetic field, that dissipation of the magnetic energy 
via reconnection inevitably leads to intense prompt pair cre-
ation and thus renders the plasma highly collisional [89–91] 
(see [92] for a review). This, in turn, means that any magnetic 
reconnection processes that might take place in such environ-
ments should proceed in the resistive MHD regime. However, 
the estimated Lundquist numbers in these systems are so huge 
that the SP reconnection would be hopelessly slow. At the 
same time, fast magnetic reconnection has been conjectured 
to play an important role in these systems; in particular, it 
is a leading mechanism for explaining the giant gamma-ray 
flares in magnetar systems like Soft Gamma Repeaters (e.g. 
[90, 93, 94]), and has also been proposed as the main mecha-
nism powering the prompt gamma-ray emission in GRBs [91, 
95–97]. It is only thanks to the plasmoid-dominated reconnec-
tion regime, with dimensionless reconnection rates of 0.01 or 
faster, that fast reconnection is possible in such systems.

Furthermore, the inherently non-steady, bursty character of 
energy dissipation in plasmoid-mediated reconnection, espe-
cially when combined with the kinetic beaming effect [98], 
provides a natural explanation for the ultra-rapid, multi-scale 
time variability of the high-energy emission observed in many 
flaring astrophysical systems, such as TeV flares in blazar jets 
[99, 100], gamma-ray flares in the Crab pulsar wind nebula 
[98, 101, 102], and GRBs [92, 103].

It should be added that in order to apply to these environ-
ments, the plasmoid instability calculation [36, 37] ought to 
be extended to include relativistic effects and radiation, both 
of which may alter its linear threshold (i.e. change Sc) and 
other properties.

4. Outstanding questions

We now wish to discuss briefly a few selected topics that 
appear to us to be a natural and necessary continuation of 
research in plasmoid-dominated reconnection.

4.1. Parametric dependence of the critical Lundquist number

A central role in the theoretical description of reconnection 
in the plasmoid regime is played by the critical Lundquist 
number, Sc; this determines (i) whether a pre-formed current 
sheet is unstable to the plasmoid instability, (ii) the dimen-
sions of the current sheets found at the bottom of the plas-
moid hierarchy ( L S/c c c

1/2δ ∼ − ) and (iii) the reconnection rate 
(cE S V Bceff

1/2
A 0∼ − ).

The theory of the plasmoid instability [36, 37] cannot be used 
to predict Sc rigorously because it is an asymptotic theory, i.e. 
it assumes that S Sc� . A non-rigorous extrapolation can how-
ever be made [37] based on the requirement of reasonable scale 
separation between the boundary layer of linear theory5 and the 

5  As in the usual tearing mode calculation [4], the linear theory of the 
plasmoid instability [36, 37] divides the domain into the immediate vicinity 
of the rational layer (the boundary layer), where resistive effects on the 
perturbation are important, and regions away from the rational layer, where 
resistivity can be neglected.
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thickness of the current sheet, i.e. S/ 1in CS
1/8δ δ ∼ − � ; in rough 

terms, a minimum requirement for the validity of asymptotic 
theory is that / 1/3in CSδ δ ∼ , which suggests S 10c

4∼  (similar 
arguments can be drawn based on the growth rate and wave 
number of the fastest growing mode; these, however, yield 
less stringent requirements on S than inδ  since the latter has the 
weakest dependence on the Lundquist number). The values of S 
typically reported in the numerical literature tend to range from 
a few thousand to  ∼104 [8, 16, 47, 54, 57].

At any rate, Sc is set by tearing-mode dynamics in a cur-
rent channel with sheared plasma flows; the precise marginal 
stability boundary of this system will naturally be a function 
of plasma parameters and properties such as β [104, 105], vis-
cosity [37], relativistic effects [106], inflow asymmetry [107], 
etc. The fact that reconnection happens in a wide variety of 
environments, where some of these parameters can take 
extremely different values, suggests that a firmer grasp of 
this dependence may be quite important and actually lead to 
appreciable differences in reconnection rates.

4.2. Onset

The fact that large-aspect ratio, SP-like current sheets are 
super-critical systems prompts one to reassess their realis-
ability in practice [31, 108–110]. To address this question, 
one is forced to consider how current sheets form, and enquire 
about their stability during the formation process. One pos-
sible scenario is as follows [31].

Starting from a current-sheet-free plasma, one imagines 
that there is some continuous dynamical process (e.g. plasma 
flows, or turbulence, but the exact mechanism need not con-
cern us at this point) that drives the formation of a current 
sheet. The aspect ratio of the forming current sheet thus grad-
ually increases in time, and eventually the marginal stability 
threshold of the tearing instability is crossed (i.e. the tearing 
instability parameter ∆′ eventually becomes positive [4]).

While ∆′ remains small very little reconnection occurs, i.e. 
up to this moment of time the process that we are describing 
corresponds to a slow (compared to the Alfvén time) stage 
of energy accumulation. However, as the current-sheet aspect 
ratio (and thus ∆′) continues to increase, the nonlinear evolu-
tion of the tearing mode will trigger a transition to a faster 
stage [8, 111]. The magnetic islands resulting from the tearing 
mode’s linear and nonlinear evolution quickly grow to exceed 
the width of the (forming) current sheet, thereby replacing 
it with an island chain. This is effectively a transition to fast 
reconnection, as the current sheets that now mediate each two 
neighbouring islands will undergo the plasmoid instability. 
This sequence of steps naturally precludes the formation 
of a fully-developed SP sheet of aspect ratio L S/SP

1/2δ ∼ − , 
although in many ways the final state of the system may be 
indistinguishable from that found when studying (artificial) 
systems where a SP sheet is the initial condition.

The scenario that we have just described is speculative 
and has not yet been tested via direct numerical simulations. 
Understanding the formation and evolution of plasmoids 
in a forming current sheet is an important open question in 

reconnection research; in particular, the moment of time when 
a forming current sheet is disrupted by plasmoids may be 
closely related to the reconnection trigger, or onset [31].

4.3. 3D

Much of what has been learned about magnetic reconnection 
so far stems from relatively simple two-dimensional configu-
rations, and it would appear that our knowledge of this sub-
ject has now reached a certain level of maturity—certainly 
as far as MHD is concerned, but perhaps even beyond that. 
In tandem with the computing capabilities that are available 
with today’s best super-computers, it thus seems that the time 
is ripe for tackling what we strongly believe to be the next 
research frontier in reconnection: fully 3D geometries.

Several numerical works have appeared recently in the lit-
erature suggesting that 3D MHD reconnection may be quite 
different than 2D, with self-excited turbulence (of both the 
plasmoid and non-plasmoid kind) leading to rather complex 
configurations [112–115] (state-of-the-art 3D kinetic simu-
lations reveal qualitatively similar, but of course physically 
even richer, behaviour [65].) Matching experimental evi-
dence for such complexity has also been reported [64, 116, 
117]. Simultaneously, a series of analytical papers by Boozer 
[118–122] has presented very compelling arguments for an 
altogether different paradigm for 3D reconnection, where the 
(probably unavoidable in space and astrophysical plasmas) 
exponentiation of the distance between two neighbouring field 
lines may lead to fast reconnection at very low levels of the 
current intensity (see [123]).

While a detailed understanding of magnetic reconnection 
in intrinsically 3D geometries remains an open challenge, a 
straightforward step in that direction is the extension to 3D 
of previous 2D studies of the plasmoid instability [57]. As a 
preliminary result, we plot in figure 1 the effective reconnec-
tion rate (measured as the ratio between the time-averaged 
plasma inflow and outflow velocities) as a function of the 

Figure 1. The effective reconnection rate as a function of the 
Lundquist number in 3D MHD simulations [124]. In this case, 

=B B/ 0.3y z , where By is the amplitude of the reconnecting magnetic 
field, and Bz is the guide magnetic field (i.e. the component 
perpendicular to the reconnection plane).
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Lundquist number. The simulations are performed in a 3D 
‘semi-global’ slab where the x- and y-directions define the 
reconnection plane (the inflow and outflow directions). The 
dimensions of the simulation domain are L L L0.5y z= = , 
where L is the (arbitrary) system size, and Lx depends on the 
Lundquist number but is always �10 SPδ . We specify periodic 
boundary conditions in the z-direction, free-outflow boundary 
conditions in y and impose the density, pressure and magnetic 
field at the x boundaries (see [57] for details). The scan in S 
is performed at fixed B B/ 0.3y z = , where By is the magnitude 
of the upstream (reconnecting) magnetic field, and Bz is the 
guide magnetic field. The fluid viscosity is always equal to 
the resistivity.

The reconnection rates shown in figure 1 exhibit the same 
trend as found in 2D simulations [30, 49, 52, 54, 56, 57]: at 
moderately small values of S, the SP S−1/2 scaling holds, fol-
lowed by a transition to an S-independent reconnection rate 
of  ∼0.02 (same as found in our previous 2D simulations [57]) 
as S increases beyond a critical value  ∼3 103×  (whereas in 
the 2D case we found S 10c

4∼ , but see the discussion below). 
This transition is accompanied by plasmoid (flux rope) forma-
tion (not shown); the number of plasmoids observed increases 
with S.

These observations strongly suggest that the 2D statements 
about the plasmoid instability rendering the reconnection 
rate independent of S are robust. However, there are several 
important questions that have not yet been addressed: does 
the transition to the plasmoid-stage, and the reconnection rate 
found therein, depend on the strength of the guide field? What 
is the structure and the distribution function of 3D plasmoids 
(flux-ropes)? How is the energy balance changed from the 
2D case? [57] shows that, in statistical steady-state, roughly 
40% of the incoming magnetic energy is dissipated via Ohmic 
and viscous heating; interestingly, Beresnyak [113] quotes 
the same number in his 3D simulations—how does this frac-
tion depend on the physical parameters of the plasma? In par-
ticular, is reconnection always an efficient energy dissipation 
mechanism? A study addressing some of these issues, as well 
as particle acceleration in 3D, plasmoid-dominated, MHD 
reconnection environments is currently underway [124].

4.4. Plasmoids beyond the MHD description

So far, our discussion has been limited to reconnection and 
plasmoids in MHD plasmas. This obviously excludes many 
reconnecting regimes where there is abundant evidence of 
plasmoid formation [29] but where collisions are not suf-
ficiently frequent (compared to the timescales of interest) to 
justify the use of an MHD description. We next discuss two 
such scenarios, in order of decreasing plasma collisionality.

4.4.1. The semi-collisional plasmoid instability. The semi-col-
lisional regime of the plasmoid instability is defined by

,i eCS inδ λ δ λ� � � (1)

where jλ , with j  =  i, e, denotes the ion or electron kinetic scales 
most relevant to the particular regime of interest, i.e. , ,i sρ ρ  or 

di in the case of the ions, de or eρ  in the case of the electrons, 
with d c/j pjω=  the ion/electron skin-depth, jρ  the ion/elec-
tron Larmor radius and sρ  the ion sound Larmor radius, and 

Sin SP
1/8δ δ∼ −  the width of the boundary layer that arises in the 

linear MHD plasmoid instability analysis (see section 2.1).
This regime is amenable to analysis via direct applica-

tion of the standard tools of the tearing instability theory. 
The case when di iλ =  [Hall-MHD plasmoid regime, relevant 
when the magnetic-field component perpendicular to the 
reconnection plane (the guide-field) is weak (i.e. 1β� )] has 
been rigorously analysed by Baalrud et al [125]. They found 

d L S/imax A
16/3 7/13( )γ τ ∼  and k L d L S/imax

1/13 11/26( )=  for the 
most unstable mode.

In the opposite limit of strong guide field ( 1β� ) one 
instead needs to consider sλ ρ= . The plasmoid instability 
scalings in this case can be easily derived (non-rigorously, 
as described in section 2.1) from well-known results for the 
tearing instability in the semi-collisional regime (see [126], 
appendix 5.c, and references therein; we add for completeness 
that the scalings above for di iλ =  can be retrieved in a similar 
way from the results of [127]). We obtain:

L V L S/ / ,smax
SC

A
2/3 2/3( )γ ρ∼ (2)

k L L S/ ,smax
SC 1/9 4/9( )ρ∼ (3)

L L S/ / ,sin
SC 7/9 10/9( )δ ρ∼ − − (4)

where the upper subscript SC denotes ‘semi-collisional’ to 
avoid confusion with the corresponding scalings in the pure 
MHD regime. These scalings are qualitatively similar to the 
MHD ones, in the sense that the instability grows faster at 
higher S, and the wave-number increases, which again leads to 
the conclusion that the SP current sheets in plasmas satisfying 
equation (1) cannot form in the first place, because they are 
violently unstable.

In addition to the constraints expressed in equation (1), the 
instability requires that all of the following conditions be sat-
isfied: L V/ 1max

SC
Aγ � , k L 1max

SC �  and / 1sin
SCδ ρ � . The latter is 

the most stringent, requiring S L / s
8/5( )ρ� , the same threshold 

that is yielded by the second inequality in equation (1); thus, 
the critical value of the Lundquist number is

S L / ,c s
SC 8/5( )ρ∼ (5)

but S L / s
2( )ρ� , as required by the first inequality in equa-

tion (1) (or else s CSρ δ�  and it no longer makes sense to con-
sider an SP current sheet as the background equilibrium)6.

6  Baalrud et al [125] retrieve the same criteria in the case of the Hall-MHD 
regime for L/di instead of ρL / s, but further require that this be an additional 
constraint besides the MHD one, i.e. that in addition to ( )�S L d/ i

8/5, the 
Lunqduist number must also be such that > ∼S S 10c

4. As we explained 
earlier (and also in [37]), ∼S 10c

4 stems from the requirement that the 
boundary layer for the resistive-MHD version of the plasmoid instability fit 
inside the current sheet. In the semi-collisionless regime that we are address-
ing in this section, the MHD boundary layer is replaced with one whose 
width is given by equation (4), so ∼S 10c

4 no longer follows from anywhere 
and must be replaced simply with equation (5), or ( )∼S L d/c i

8/5 in the higher 
β case analysed by Baalrud.
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It is worth emphasizing that in the semi-collisional regime 
Sc is a function of L / sρ , whereas in the MHD regime it is a 
number—an evident reflection of the absence of special scales 
in MHD. This has interesting consequences that we now 
discuss.

In figure 2 we revisit the reconnection phase diagram of 
Ji and Daughton [29] (see also [128]). Different reconnec-
tion regimes are indicated as a function of Lundquist number 
(vertical axis) and of the ratio between the system size, L, and 
the ion sound Larmor radius, sρ  (horizontal axis). The (black, 
diagonal) solid line is yielded by the SP model (and forget-
ting for the moment the plasmoid instability): comparing SPδ  
with kinetic effects (whose proxy here is sρ ) indicates whether 
we are in a collisional SP regime, or in a collisionless regime 
(respectively, below or above the solid black line). The ver-
tical (solid) red line labelled L / s c( )ρ  is an empirical line that 
follows from the numerical observation that simulations of 
collisionless reconnection with L / 50sρ �  tend to exhibit mul-
tiple plasmoids, whereas those with L / 50sρ �  tend to show 
a single X-point (there is no analytical theory to back this 
threshold). The horizontal (solid) green line labelled Sc indi-
cates the resistive MHD plasmoid instability threshold—the 
SP current sheet is plasmoid unstable in the region above the 
green line, and stable below it (another threshold that exists 
but that we omit for simplicity results from the case when the 
MHD plasmoid instability, in its nonlinear stage, triggers a 
transition to the kinetic scales, as discussed in section 2.2). 
The regions of operational space roughly covered by a selec-
tion of reconnection experiments (both existing [19, 129, 
130] and planned [131]) are also indicated. Finally, we draw 
in dashed blue the new line suggested by the semi-collisional 
theory discussed above: plasmas (asymptotically) above this 
line, but (asymptotically) below the (black) solid diagonal 
line, should exhibit the semi-collisional version of the plas-
moid instability.

It is worth contrasting this diagram with its previous ver-
sion [29] (remove the blue dashed line and extend the green 

horizontal line all the way to meet the black solid line) and 
realising that, in light of these new results, the plasmoid insta-
bility, in the semi-collisional version described here (or in the 
version of [125] if β is not small), should actually be accessible 
to existing facilities such as MRX, and even more accessible to 
new and upcoming experiments like TREX and FLARE.

In addition, we remark that another important reconnection 
environment that falls in the semi-collisional regime is the 
solar corona (not shown in the diagram because it is truncated 
at relatively low values of S).

A nonlinear theory of the semi-collisional plasmoid insta-
bility is an open (and in view of this discussion, important) 
problem.

4.4.2. The semi-collisionless plasmoid instability. At some-
what smaller values of collisionality, the ordering of the  
relevant length scales becomes

.i eCS inδ λ λ δ� � � (6)

We shall refer to this as the semi-collisionless regime; essen-
tially, it differs from the semi-collisional regime in that the 
breaking of the frozen-flux condition is now enabled by elec-
tron kinetic effects, not collisionality (even if, of course, colli-
sionality must remain finite or there would not be an SP sheet 
in the first place).

Considering the case when i sλ ρ=  and de eλ =  (and neg-
ligible electron finite-Larmor-radius effects), we derive from 
the corresponding scalings for the tearing instability (see 
appendix 3.E of [126] and references therein) the following 
expressions:

V L d L L S/ / / ,e smax
semi c less

A
3/2( ) ( ) ( )γ ρ∼− ′ (7)

k L d L L S/ / ,e smax
semi c less 1 2/3 1/3( ) ( )ρ∼− −′ (8)

L d L L/ / .e sin
semi c less 2/3 1/3( ) ( )δ ρ∼− ′ (9)

Figure 2. Reconnection phase diagram (see [29]). The semi-collisional plasmoid theory suggests the existence of a new reconnection 
regime that may be pertinent to reconnection experiments. (See section 4.4.1 for an explanation of the different lines and regimes indicated 
in the figure).
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Once again, the expressions for the growth rate and wave-
number diverge (even faster than in the MHD or semi-colli-
sional regimes) as S increases.

The semi-collisionless regime formally holds if dein
SCδ �  

and sin
semi c less

SPδ ρ δ− ′ � � . The first of these requirements 
yields

S L d L/ / ,e s
9/10 7/10( ) ( )ρ� (10)

whereas requiring that the sin
semi c lessδ ρ− ′ �  demands 

de sρ� , a condition already assumed in this derivation 
and which directly translates into m m/e e iβ � ; finally, the 
requirement s SPρ δ�  was already dealt with in the semi-col-
lisional case and translates into S L / s

2( )ρ� . To appreciate the 
mutual consistency of these and the semi-collisional scalings 
above, note that taking ds eρ =  converts equation  (10) into 
S L / s

8/5( )ρ� . Thus, the critical value of S required to access 
the semi-collisionless regime is obtained from equation (10), 
with maximum value of L / s

2( )ρ .

5. Final remarks and outlook

In this paper, we have attempted to give a broad overview of 
recent developments and current state-of-the-art in the study 
of magnetic reconnection in the simplest plasma description 
where reconnection is possible: resistive MHD. While there 
certainly are many examples of reconnecting environments 
where resistive MHD is an adequate description, it is also gen-
erally appreciated that there is a wide variety of weakly col-
lisional systems where it is not. We would nonetheless argue 
that, even for such cases, a firmer grasp of MHD reconnection 
is critical: indeed, several MHD findings, and in particular 
the plasmoid instability and subsequent stochastic plasmoid 
dynamics, seem to carry over qualitatively to kinetic recon-
nection. In addition, we believe that the simple fact that MHD 
reconnection continues to surprise us justifies attempts to 
investigate it at a deeper level.

The developments in the field that we discussed here 
embolden us to venture the idea that the problem of magnetic 
reconnection in natural, high Lundquist number systems, may 
actually be a solvable one, in the sense of having concrete 
answers to the three overarching questions, viz., reconnection 
rate, trigger mechanism and energy partition. The suggestion 
that we may be nearing a satisfactory level of understanding 
of the 2D problem certainly seems credible, and indicates that 
the community’s focus should perhaps turn to full 3D geom-
etries. It is worth bearing in mind that, in contrast with another 
classic and fundamental problem of comparable complexity, 
namely, the turbulent dynamo, one may yet find that reconnec-
tion is cursed, rather than blessed, with being topologically 
possible in 2D. Indeed, the discovery that dynamos are math-
ematically impossible in 2D (Cowling’s theorem) imposed 
realistic geometries on the dynamo community from very 
early on. The reconnection community has been able to get 
by so far in almost complete denial of 3D aspects, but this is 
changing as computers get ever more powerful. As this issue 
inevitably gains traction over the coming years, we will find 

whether existing, 2D, reconnection models translate to 3D in 
fairly obvious ways, or whether, on the contrary, a completely 
different paradigm will emerge.
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