Introduction to Stellarators

David A. Maurer

SULI Lecture • PPPL • 9 June 2016

The continuum of magnetic confinement configurations

 Confining magnetic fields can be supplied/generated by internal plasma currents or external coils

See M. Mauel 2015 SULI lecture for further discussion of other configurations

Stellarators were first conceived at Princeton

 Generation of rotational transform or field line twist without plasma current

Proposed by Lyman Spitzer Jr in 1951 as part of Project Matterhorn

Called a stellarator or "star generator"

Project Matterhorn was later declassified and renamed PPPL in 1961

It is an exciting time to be studying stellarator physics: W7-X

 First experimental test of stellarator optimization to produce tokamak like neoclassical transport

Wendelstein 7-X

Some Stellarator advantages...

- Intrinsically steady-state, without the need to drive plasma current
- Lack of plasma current removes large class of instabilities that are seen in tokamaks
- Magnetic configuration given by external coils is rigid, no disruptive loss of confinement
- Potential for greater range of designs and optimization of fusion performance

Some Stellarator disadvantages...

- Complicated coil configurations that are difficult to design, need to be precisely built, and are expensive as a result
- Achieving good particle confinement is more difficult than in tokamaks
- Divertor and heat load geometry is more complicated than in tokamaks

Outline

- Confining a plasma in a torus and the need for rotational transform
- Generating magnetic surfaces without net plasma current
- New directions in stellarator research
- Auburn University fusion program

Outline

- Confining a plasma in a torus and the need for rotational transform
- Generating magnetic surfaces without net plasma current
- New directions in stellarator research
- Auburn University fusion program

How do magnetic fields confine ionized matter?

How do magnetic fields confine ionized matter?

 $\mathbf{J} \times \mathbf{B} = \nabla P$ $\mathbf{B} \cdot \nabla P = 0$ $\mathbf{J} \cdot \nabla P = 0$

Surfaces of constant plasma pressure form nested tori

How do magnetic fields confine ionized matter?

 $\mathbf{J} \times \mathbf{B} = \nabla P$ $\mathbf{B} \cdot \nabla P = 0$ $\mathbf{J} \cdot \nabla P = 0$

Surfaces of constant plasma pressure form nested tori

Start with simple cylindrical equilibria

Why do we need twisting field lines for confinement?

Bend Z pinch or Theta pinch into a torus

Z pinch is very MHD unstable...

Why do we need twisting field lines for confinement?

• Bend Theta pinch into a torus: guiding center picture

Why do we need twisting field lines for confinement?

Spitzer's insight/solution

Twist causes "up" to be away from the midplane half the time and towards it the other half, thus averaging the vertical drift out

Outline

- Confining a plasma in a torus and the need for rotational transform
- Generating magnetic surfaces without net plasma current
- New directions in stellarator research
- Auburn University fusion program

Rotational transform is a measure of field line twisting

l

- For a screw pinch equilibrium: $\vec{B} = B_{\theta}(r)\hat{\theta} + B_{\phi}(r)\hat{\phi}$
 - Pitch: $P(r) = \frac{B_{\theta}(r)}{B_{\phi}(r)}$
 - Rotational transform:

$$=\frac{d\theta}{d\phi}=\frac{R_0B_{\theta}(r)}{rB_{\phi}(r)}$$

Field lines and magnetic surfaces

The three ways to generate rotational transform

- Net toroidal plasma current like in the tokamak
- Torsion (non-planar) magnetic axis like the original figure eight stellarator
- Non-circular deformation of the magnetic surfaces in resonance with field line motion

Equations for field line motion

Simple example field: $B(\vec{r}) = B_0 \hat{z} + \hat{z} \times \nabla f(\vec{r})$

$$\frac{dx}{B_x} = \frac{dy}{B_y} = \frac{dz}{B_z}$$

For motion along the field direction:

Equations for field line motion

Simple example field: $B(\vec{r}) = B_0 \hat{z} + \hat{z} \times \nabla f(\vec{r})$

For motion along the field direction:

$$\frac{dx}{B_x} = \frac{dy}{B_y} = \frac{dz}{B_z}$$

Some algebra yields...

$$\frac{dx}{dz} = -\frac{1}{B_0} \frac{\partial f}{\partial y} \qquad \qquad \frac{dy}{dz} = +\frac{1}{B_0} \frac{\partial f}{\partial x}$$

Equations for field line motion

Our field line "equations of motion" for this simple model are

$$\frac{dx}{dz} = -\frac{1}{B_0} \frac{\partial f}{\partial y} \qquad \qquad \frac{dy}{dz} = +\frac{1}{B_0} \frac{\partial f}{\partial x}$$

Identifying $x \rightarrow q \ y \rightarrow p \ z \rightarrow t$ and setting $f = -B_0 H$

$$\implies \dot{q} = -\frac{\partial H}{\partial p} \qquad \dot{p} = +\frac{\partial H}{\partial q}$$

Magnetic field lines are a Hamiltonian system!

Our field line "equations of motion" for this simple model are

$$\frac{dx}{dz} = -\frac{1}{B_0} \frac{\partial f}{\partial y} \qquad \qquad \frac{dy}{dz} = +\frac{1}{B_0} \frac{\partial f}{\partial x}$$

Identifying $x \rightarrow q \ y \rightarrow p \ z \rightarrow t$ and setting $f = -B_0 H$

$$\implies \qquad \dot{q} = -\frac{\partial H}{\partial p} \qquad \dot{p} = +\frac{\partial H}{\partial q}$$

These are Hamilton's equations of classical mechanics

Magnetic field line structure exhibits all the complexity of Hamiltonian chaos

Magnetic surfaces are fragile unless properly made

Magnetic field line structure exhibits all the complexity of Hamiltonian chaos

Magnetic surfaces are fragile unless properly made

Standard map exhibits this generic behavior

Magnetic islands and your friend the simple pendulum

Ways to construct good magnetic surfaces without net current have been devised

 There are several "classical" stellarator device types that can do it

Suitably good magnetic surfaces can be constructed experimentally

 Measurement of flux surface integrity using electron beam mapping

Suitably good magnetic surfaces can be constructed experimentally

 Measurement of flux surface integrity using electron beam mapping

Synthetic diagnostic

Composite Image

Outline

- Confining a plasma in a torus and the need for rotational transform
- Generating magnetic surfaces without net plasma current
- New directions in stellarator research
- Auburn University fusion program

Helical coils used in classical stellarators are continously wound

• Motivation for modular coil design

Coil currents in (θ, ϕ) space

Modular coils have advantages

 Coils can be built independently, harder to design, but allow easier assembly/disassembly of device and access

 (θ, ϕ) space

Modular coils mapped back into physical space have non-trivial shape

 Coils can be built independently, harder to design, but allow easier assembly/disassembly of device and access

 (θ, ϕ) space

Physical space

Modular coils allow "plasma first" design

We can design the plasma equilibrium based on physics considerations (equilibrium, stability, transport) and then design a set of coils to produce the required field.

Outline

- Confining a plasma in a torus and the need for rotational transform
- Generating magnetic surfaces without net plasma current
- New directions in stellarator research
- Auburn University fusion program

Given 3D equilbrium magnetic surfaces, how leaky are they in terms of plasma transport?

• Trajectories in axisymmetry: passing and trapped particles

• Canonical momentum conservation due to axisymmetry also bounds excursion from flux surfaces: $p_{\phi} = mRv_{\phi} + q\psi$

Particle trapping leads to so-called banana orbits in tokamaks

 Trapped trajectories projected to a poloidal plane are banana shaped

 Increases effective step size for collisional transport, with trapped particles dominating transport rate
Particle trajectories in a stellarator

- As in a tokamak, particles can be passing or trapped due to toroidicity
- There are also particles which get trapped in local minima due to the helical periodicity

• These particles trapped in local minima are confined to regions on the upper or lower half of the flux surface

Direct orbit loss

• As a result their vertical drifts don't cancel out, and they drift straight out of the machine.

- This drift is different for electrons and ions, and so leads to electric fields also
- No conserved canonical momentum without axisymmetry to help limit excursions also

Stellarator optimization: Quasi-symmetry

Particle drift orbits only depend on magnetic field strength, so symmetry in it gives rise to canonical momentum conservation

Helically Symmetric eXperiment (HSX) at University of Wisconsin-Madison confirmed reduction in direct loss orbits through use of quasi-symmetry

Stellarator optimization: Isodynamic

Outline

- Confining a plasma in a torus and the need for rotational transform
- Generating magnetic surfaces without net plasma current
- New directions in stellarator research
- Auburn University fusion program

Disruption avoidance and mitigation essential for future current carrying tokamaks

- Context: Small amounts of 3D fields are used for a variety of purposes on present day tokamaks with $B_{3D}/B_0 \approx 10^{-3}$
- Can application higher levels of 3D magnetic shaping, B_{3D}/ B₀ ~ 0.1, suppress tokamak instabilities and disruptions?

Work informs experimental basis for:

- --- Stability properties of compact quasi-axisymmetric stellarators
- --- Possible use of external transform on tokamak systems
- --- Shed light on tokamak disruption physics and 3D MHD

The Compact Toroidal Hybrid (CTH) was designed to address these issues

- **Hybrid**: current driven within 3D equilibrium of a stellarator plasma
- Can vary the relative amount of externally applied transform
 - *I*_p provides up to 95%

• Previous hybrids showed evidence of disruption avoidance and improved positional stability (W7-A team, Nucl. Fusion. 1980, H. Ikezi et al, Phys. Fluids. 1979)

Overview of CTH operational space and the 3 types of disruptions observed

CTH can operate beyond the Greenwald density limit

Density-limit disruptions

Low-q disruptions can occur when CTH operates with q(a) < 2

- Density-limit disruptions
- Low-q disruptions

CTH can operate beyond the q(a) = 2current limit, with a slight increase in t_{vac}

- Density-limit disruptions
- Low-q disruptions

Vertically unstable plasmas can result in a disruption if uncompensated

- Density-limit disruptions
- Low-q disruptions
- Vertically unstable plasmas

Outline

- Compact Toroidal Hybrid
- 3D equilibrium reconstruction
- Disruption avoidance:
 - 1. Density limit disruptions
 - 2. Low-q disruptions
 - 3. Vertically unstable plasmas
- Summary

 Helical Field coil and Toroidal Field coil currents adjusted to modify vacuum rotational transform _{tvac}

- Helical Field coil and Toroidal Field coil currents adjusted to modify vacuum rotational transform _{4vac}
- Shaping Vertical Field coil varies elongation κ and shear

- Helical Field coil and Toroidal Field coil currents adjusted to modify vacuum rotational transform _{4vac}
- Shaping Vertical Field coil varies elongation κ and shear
- Central solenoid drives $I_p \leq 80$ kA, adding to total transform

- Helical Field coil and Toroidal Field coil currents adjusted to modify vacuum rotational transform _{4vac}
- Shaping Vertical Field coil varies elongation κ and shear
- Central solenoid drives $I_p \leq 80$ kA, adding to total transform
- Trim Vertical Field coil and Radial Field coil control position $R_0 = 0.75 \text{ m}$ $R/a \sim 4$ $n_e \leq 5 \times 10^{19} \text{ m}^{-3}$ $T_e \leq 200 \text{ eV}$ $|B| \leq 0.7 \text{ T}$

Outline

- Compact Toroidal Hybrid
- 3D equilibrium reconstruction
- Disruption avoidance:
 - 1. Density limit disruptions
 - 2. Low-q disruptions
 - 3. Vertically unstable plasmas
- Summary and conclusions

Experimental 3D equilibria reconstructed with V3FIT code (J.D. Hanson et al., Nucl. Fusion, 2009)

- Equilibrium strongly modified by plasma current
- Find MHD equilibrium most consistent with data
 - Over 40 external magnetic diagnostics as input
- Reconstructions using only external magnetics provide accurate information on: plasma shape, enclosed toroidal flux, rotational transform near the edge

Outline

- Compact Toroidal Hybrid
- 3D equilibrium reconstruction
- Disruption avoidance and mitigation:
 - 1. Density limit disruptions
 - 2. Low q(a) disruptions
 - 3. Vertically unstable plasmas
- Summary and conclusions

Density limit disruptions triggered by ramping density with edge fueling

- Discharges with similar low transform _{tvac} = 0.05
- Phenomenology of hybrid discharge terminations similar to tokamak disruptions
 - Negative loop voltage spike
 - Current spike followed by rapid decay
 - Strong coherent MHD precursor

Disruption precursor fluctuations similar to those seen in tokamaks

Disruption precursor fluctuations indicate internal tearing mode

MHD modulates density and SXR emission

Disruption preceded by rotating m/n = 2/1 tearing mode that locks

Density at disruption scales with the plasma current and vacuum transform

 Follows trend of Greenwald limiting behavior:

•
$$n_{\rm G} = I_{\rm p}/\pi a^2$$

 Additional dependence on applied level of vacuum transform

(M. Greenwald et al., Nucl. Fusion, 1988)

Density at disruption exceeds Greenwald limit as vacuum transform is increased

 Have not found a threshold value of vacuum transform that eliminates these disruptions

Outline

- Compact Toroidal Hybrid
- 3D equilibrium reconstruction
- Disruption avoidance:
 - 1. Density limit disruptions
 - 2. Low-q disruptions
 - 3. Vertically unstable plasmas
- Summary and conclusions

High current plasmas disrupt with q(a) below 2 and vacuum transform low

- Example with $t_{vac} = 0.02$ ($q_{vac} = 50$)
- Disruption does not occur on initial crossing of q(a) = 2
- Bursts of magnetic fluctuations are detected throughout the discharge
- Density kept low and roughly constant

Hesitations in current rise as resonant surfaces move through the plasma edge

- q = 4 surface exits the plasma edge
- *m* = 4, *n* = 1 mode detected

Hesitations in current rise as resonant surfaces move through the plasma edge

- q = 3 surface exits the plasma edge
- *m* = 3, *n* = 1 mode detected

Hesitations in current rise as resonant surfaces move through the plasma edge

- q = 2 surface exits the plasma edge
- *m* = 2, *n* = 1 mode detected
- Remains at low amplitude

An m = 3, n = 2 mode grows to large amplitude just prior to disruption

- q = 3/2 surface near edge but remains inside plasma
- *m* = 3, *n* = 2 mode detected

Low-q disruptions cease to occur if vacuum transform raised above ~ 0.07

Low-q disruptions cease to occur if vacuum transform raised above ~ 0.07

Low-q disruptions cease to occur if vacuum transform raised above ~ 0.07

- Possible explanation: Applied _{tvac} shifts 3/2 resonance outward to where the current profile is less steep, stabilizing the 3/2 tearing mode
 - Invoked for the stabilization of 2/1 tearing mode in W7-A (W7-A team, Nucl. Fusion. 1980)
- Lack of strong n = 1 kink mode activity seen computationally (Fu, et al., Phys. Plasmas. 2000)

Outline

- Compact Toroidal Hybrid
- 3D equilibrium reconstruction
- Disruption avoidance:
 - 1. Density limit disruptions
 - 2. Low-q disruptions
 - 3. Vertically unstable plasmas
- Summary and conclusions
CTH discharges naturally elongated and can be susceptible to vertical instability

- ECRH plasma $I_p = 0 \text{ kA}$
 - Mean *κ* = 2.77
 - Fractional transform $f = \iota_{vac}(a)/\iota_{tot}(a) = 1$

- At peak I_p = 75 kA
 - Mean $\kappa = 1.48$
 - Fractional transfrom f = 0.0634

Elongated plasmas are measured to be vertically unstable

• Vertical position inferred from magnetic diagnostics

Vertical motion is also detected by interferometry and SXR cameras

1mm wave interferometer

SXR pinhole camera

Discharges exhibit faster drift at high elongation and low fractional transform

 Large ensemble of discharges with varied elongation and fractional transform

Discharges exhibit faster drift at high elongation and low fractional transform

 Large ensemble of discharges with varied elongation and fractional transform

Plasmas with high elongation stabilized by addition of vacuum transform

(M.C. ArchMiller, et al., Phys. Plasmas. 2014)

Qualitative agreement with analytic criterion for vertical stability

• Energy principle used to derive fraction of vacuum transform needed to stabilize vertical mode in a current-carrying stellarator (G.Y. Fu, Phys. Plasmas, 2000)

•
$$f \equiv \frac{\iota_{\text{vac}}(a)}{\iota_{\text{tot}}(a)} \ge \frac{\kappa^2 - \kappa}{\kappa^2 + 1}$$

- Large aspect ratio, low-β stellarator
- Uniform profiles of current density and vacuum rotational transfrom

Summary

- Disruptive density limit exceeds Greenwald limit as vacuum transform is increased
 - Threshold for avoidance not observed
- Low-q disruptions cease to occur if vacuum transform raised above ~ 0.07 ($q_{vac}(a) \sim 14$)
 - *m* = 2, *n* = 1 mode not implicated in disruption
- Vertical stability of elongated plasmas improved by stellarator transform
 - Qualitative agreement with analytic theory

This work supported by U.S. Department of Energy grant DE-FG-02-00ER54610

Thank you

Density at disruption observed to be independent of plasma current evolution

- Discharges with similar transform _{tvac} = 0.07
- Different programmed loop voltage
- Disruption occurrence correlates with plasma current and density as in tokamaks

Drift orbit optimization

