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Computational plasma physics

* The role of computation 1n science.
« Example to highlight some concepts.
* Challenges 1n simulating plasmas.

* Examples of plasma simulations.



A simplistic view of the scientific method:

1. Theorists think up theories.
2. Generate a hypothesis.
3. Test hypothesis with an experiment.



The practice of science is much more complicated,

and computation plays a key role.

f Experiments \

+ Ultimately matter.

+ Grounded in reality.
- Complicated.

-  Expensive.

- You cannot measure

k or control everythingj

/

Mathematical models (equations)

4 Analytic Theory )
+ Determine scalings.
+ Physical insight.

- Often limited to simplified geometry.
\.- Need to make many approximations. /

\

/
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Computation
Can solve equations with fewer approximations.
Everything can be measured.
Effects can be turned on & off.

Worries about bugs, resolution, numerical instabilities.

\

& Harder to get insight & scalings.
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The practice of science is much more complicated,

and computation plays a key role.

Validgte models. Mathematical models (equations)
Experimentally relevant values. )

Inspire models. 4 Analytic Theory )
+ Determine scalings.
+ Physical insight.
- Often limited to simplified geometry.
/ Experiments \ \- Need to make many approximations.
+ Ulumately matter. Need theory to know which equations to simulate.
+ Grounded in reality. : : : ..
- Complicated. Test codes by comparing to theory in various limits.
_ Ex ; Analysis of equations informs numerical methods.
pensive.
- You cannot measure
k or control everything/ Simulations can inspire and test theory,
indicate good approximations.
Computation \
+ Can solve equations with fewer approximations.
Design facilit.ies. + Everything can be measured.
Inspire experiments. + Effects can be turned on & off.
Interpret data. - Worries about bugs, resolution, numerical instabilities.

K Harder to get insight & scalings. j
6




Example of computation leading theory:

impurity transport in a stellarator.

2 codes gave very different predictions for one of the transport coefficients:

C Flux « —Vnyg
Big 10" ‘ i

10 '\-\ ° SFINCS code

‘\ ° Momentum-corrected DKES code

Small 10

Small

-1
1073 107 10 10° 10

Collisionality v/ (density / temperature?)

Big -10 -1 1

Led to new analytic theory: a difference between the codes that was thought to
be unimportant (diffusionin |v| due to collisions) is actually important here.

A Mollen et al, Phys Plasmas (20135)



In many ways, scientific computing

is a lot like experiment.

« Keeping an experiment or code running is a
game of whac-a-mole. (Alignment of optics
drifts, sysadmins update some library,
‘bitrot’, ...)

* A good dataset s precious.
* Must keep lab notebooks.
* Must think about data management.

» Tradeoff between carefulness & getting
somewhere:

— You never have time to really understand all
the components.

— There are always too many mysteries. Need
to judge which are worth tracking down.

* Modify an existing tool that works vs start with a clean slate?



Computational plasma physics

* The role of computation 1n science.

« Example to highlight some concepts.
— Collocation vs modal discretization
— Explicit vs implicit time advance
— Numerical (in)stability

* Challenges 1n sitmulating plasmas.

* Examples of plasma simulations.



Example: 1D diffusion

T(x,t), XE[O, 1], te[O, oo) or _0°T

T(x,0)=0, T(0,t)=0, T(Lt)=0.
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Example: 1D diffusion

rlee), weo, 1] ce[om) [T, 1)

T(x,0)=0, T(0,t)=0, T(Lt)=0.

Discretize in space with a

“collocation” approach:

Store T on gridpoints x;: T = T(xj)
T

I'(x;) o Could also use a “modal”

discretization:
Store amplitudes g; of some
basis functions ¢;:

T(x):zj:ajq)j(x)
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Example: 1D diffusion

4 )
0o d 0’
T(x,t), XE[O, 1], te[O, ) \a_:: aX'I;_I_lOg(X_l_l)j

T(x,0)=0, T(0,t)=0, T(Lt)=0.

Discretize in space with a

“collocation” approach:

Store T on gridpoints x;: T, = T(xj) ( aT j
T

J+1

“Finite difference’ derivatives:
T(xj + h) — T(Xj — h)
h—0 2h

T'(x,)
T T

12 12

Ax

U
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Example: 1D diffusion

4 )
0o d 0’
T(x,t), XE[O, 1], te[O, ) \a_:: ax’121+10g(x+1))

T(x,0)=0, T(0,t)=0, T(Lt)=0.

Discretize in space with a
“collocation” approach:

“Finite difference” derivatives:

Store T on gridpoints x;: T, =T(x.) aT —lim T(Xj+h)_T(Xj_h)
T : : 0Xx e 2h
T(x;) J+1 J
- Lian=Tap
Ax
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We’ve discretized space; now discretize time.

or, |1, -1 -{7,-7.,]

ot (AX)Z
k+1 k
Introduce a time grid t,. We store Tjk = T(xj,tk). (E)T_ J T] _Tj
x.t
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We’ve discretized space; now discretize time.

a;; - [Tj” _TJ_[ZT" _TH} +log(xj +1)
(AX) k+1 k
Introduce a time grid t,. We store Tjk = T(xj,tk). (a_TJ - Uy _
ot At

Should we evaluate right-hand side at ¢, or ¢,,?
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We’ve discretized space; now discretize time.

8871,} - [Tj” _T’]_ETJ _TH} +log(xj +1)
(AX) k+1 k
Introduce a time grid t,. We store Tjk = T(xj,tk). (a_TJ - Uy _
ot At

Should we evaluate right-hand side at ¢, or ¢,,?

If we choose t;,, we get an explicit formula for updating T: “Forward Euler”

i Ll

Y (AX)Z +log(xj +1)

16



We’ve discretized space; now discretize time.

a;;f - [Tj” _T’]_ETJ _TH} +log(xj +1)
(AX) k+1 k
Introduce a time grid t,. We store Tjk = T(xj,tk). (a_TJ - Uy _
ot At

Should we evaluate right-hand side at ¢, or ¢,,?

If we choose t;,, we get an explicit formula for updating T: “Forward Euler”

i Ll

Y (AX)Z +log(xj +1)

T HET, e o
(a0 |

7—;k+1 — Tij +At|:
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In an ‘implicit’ method, terms other than the

d/dt term are evaluated at the new time.
} “Backward Euler”
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In an ‘implicit’ method, terms other than the

d/dt term are evaluated at the new time.

Tk+1 _ Tk |:Tk+1 . Tk-l—l :| |:Tk+1 . Tk+1 :| “Backward Euler”
g LM . = +log(x +1)
At ( AX)
N . Derivative becomes differentiation matrix:
Let T" be avector of the T values: / \
J -2 1 0
T Tk 1 1 -2 1

v =13T"+1+log(xj+1), D=

(AX)Z (? 1 .—.2
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In an ‘implicit’ method, terms other than the

d/dt term are evaluated at the new time.

Tk+1 _ Tk |:Tk+1 . Tk-l—l :| |:Tk+1 . Tk+1 :| “Backward Euler”
g LM . = +log(x +1)
At ( AX)
N . Derivative becomes differentiation matrix:
Let T" be avector of the T values: / \
J -2 1 0
T Tk 1 1 -2 1

v =13T"+1+log(xj+1), D=

(AX)Z (:) 1 .—.2

T — At DT =T*+ At log(x,+1)
:[T—At B]Tkﬂ
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In an ‘implicit’ method, terms other than the

d/dt term are evaluated at the new time.

Tk+1 _ Tk |:Tk+1 . Tk-l—l :| |:Tk+1 . Tk+1 :| “Backward Euler”
g LM . = +log(x +1)
At ( AX)
N . Derivative becomes differentiation matrix:
Let T" be avector of the T values: / \
J -2 1 0
T Tk 1 1 -2 1

v =13T"+1+log(xj+1), D=

(AX)Z (:) 1 .—.2

T — At DT =T*+ At log(x,+1)
:[T—At B]Tkﬂ

T =(T - At D) [T"+At log(xj+1)}
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In an ‘implicit’ method, terms other than the

d/dt term are evaluated at the new time.

Tk+1 _ Tk |:Tk+1 . Tk-l—l :| |:Tk+1 . Tk+1 :| “Backward Euler”
' J

Ji ]+1

= = +log(x +1)

At ( AX)Z
N . Derivative becomes differentiation matrix:
Let T" be avector of the T values: / \
! -2 1 0 -
Tk+1 . Tk R - 1 1 _2 1
=DT"+1+log(x,+1), D=——>
At J ( AX) 0o 1 -2
- e )

T At DT =T* + At log(x.+1) . ,

R . 1J J  Implicit methods require a

:[I —AtD )T " matrix inversion, so each time
step 1s slower than in an

explicit method.

k+1 k
T (I At D) [T +At log(xj +1)} * In exchange, Af can be larger

without numerical instability.
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« MATLAB example
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The numerical instability can be

understood using

Drop inhomogeneous term - amounts to subtracting off long-time solution.

Explicit Implicit
Tk+1 . Tk B 82 Tk Tk+1 . Tk B 82 Tk+1
At 0x’ At 0x°

Consider Fourier modes T* (x) =T" exp(ikx):

k+1 k k+1 k
T +A_ T _ _kZTk T +A_ T _ _k2Tk+1
t t
Rearrange:
Tk+1 ) Tk+1 1
Tk — 1— ét kJ Tk — 1 >
1+At k”
If At> Z/k2 for ]argest k, Magnitude always <1

then ‘T‘ increases.
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Using Fourier modes or orthogonal polynomials,

you can achieve ‘spectral accuracy’

E.g., Chebyshev grid for X and associated D:

Errorin T(x=0.5, t=0.1), loglog plot

100 T ‘
............ e--- Finite difference
...................... —e— Chebyshev
.................. .. -1 /N? scaling
107
10-10 L
-15
10° 10" 102

Number of grid points

Best conceivable precision
due to roundoff error.
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Using Fourier modes or orthogonal polynomials,

you can achieve ‘spectral accuracy’

E.g., Chebyshev grid for X and associated D:

Errorin T(x=0.5, t=0.1), loglog plot Same data on a semilog plot
L A ————— 10° | ‘ —
......... o Finite difference ~-e--Finite difference
.................... —e— Chebyshev —e—Chebyshev
......................................... 1/N2 scalin = - €Xp(-2N) scaling
g e, 9 -
107+ 107}
10_10 | 10-10 L
-15 Y o ‘ 15 | ‘ ‘ S
10 100 10" 102 10 0 5 10 15 20
Number of grid points Number of grid points

Best conceivable precision
due to roundoff error.
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Computational plasma physics

* The role of computation 1n science.
« Example to highlight some concepts.
* Challenges 1n simulating plasmas.

* Examples of plasma simulations.
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Why not just numerically solve
Maxwell’s equations + Lorentz force?
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Why not just numerically solve

Maxwell’'s equations + Lorentz force?

0B
V.E= __98
p/go VXE E)t . aE mﬂ:CI(E-FVXB)
V-B=0 VXB:‘UOI_l__Zg dt
C

Typical lab plasma has ~ 10?° particles.
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Why not just numerically solve

Maxwell’'s equations + Lorentz force?

0B
V.E= __98
p/80 VXE E)t . aE mﬂ:CI(E-FVXB)
V-B=0 VXB:‘UOI_F_ZE dt
C

Typical lab plasma has ~ 10?° particles.

Storing a floating-point number (“double precision”) takes 8 bytes.

Just storing (x, y, z, v,, v,, v,) for 10? particles would take
6x8x10%0 bytes ~ 5x10° terabytes.
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Why not just numerically solve

Maxwell’s equations + Boltzmann equation?
Distribution function f (t,x, V,Z,v, ,vy,vz)

af+v -Vf+— (E+v><B) V f= 4
at m dt collisions

High number of dimensions + scale separation are challenges.
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Why not just numerically solve

Maxwell’s equations + Boltzmann equation?

Distribution function f (t,x, V,Z,v, ,vy,vz)

ot m dt

High number of dimensions + scale separation are challenges.

af+v -Vf+— (E+v><B) V f= [df)

Suppose spatial grid scale is ~ electron gyroradius: ~ 10~ m
Suppose plasma size is 1 m? =» (10°)° = 10! spatial grid points.
Suppose velocity grid 1s 10x10x10.

Storing a double-precision number takes 8 bytes.

So just storing f would take 8x103x10'5 bytes ~ 107 terabytes.
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Fusion plasmas exhibit enormous ranges of
temporal and spatial scales.

electron lon drift =
gyromotion gyromotion rotation 9'03?:4[9?'3“%
iffusion
electron plasma Alfven wave energy
oscillation propagation turnover
107" 107" 10° 10° 10 10”° 10° 10° 10°
Characteristic Times in ITER (s)
electron ion equilibrium
gyroradius  gyroradius gradient effective particle
electron ion plasma mean free path
skin depth skin depth circumference
10° 10 10° 10° 10" 10° 10" 10° 10° 10°

Characteristic Lengths in ITER (m)

« Using 10* time steps in a simulation can be reasonable. 10'° is not.

« Using 10° grid points/dimension ina simulation can be reasonable. 10° is not.

Carl Sovinec, http://www.csm.ornl.gov/workshops/SciDAC2005/SovinecTalk/scidac05 _talk.pdf 33



Different classes of code are used to handle

different ranges of scales.

SAWTOOTH CRASH ENERGY CONFINEMENT
ELECTRON TRANSIT  TURBULENCE ¥ |
-1 | ISLAND GROWTH  CURRENT DIFFUSION
Q. Wy Q! Ta () 1
USRS UABNS | AR AR LS S U ('

ka

Zicm)

(b) Micro-

(a) RF codes turbulence codes (c) Extended-

MHD codes

(d) Transport Codes
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Computational plasma physics

* The role of computation 1n science.
« Example to highlight some concepts.
* Challenges 1n simulating plasmas.

* Examples of plasma simulations.
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Plasma turbulence can now be simulated

rokinetic’ equations.

* Average equations over gyration to eliminate the fastest timescale.

* Only keep gyroradius scale perpendicular to B. Use coarser grid along B.

Figure + movie by GENE group: genecode.org 36



e GENE movie
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“Extended MHD” codes are used to simulate

large-scale plasma dynamics.

» Fluid equations: reduced dimensionality yields huge computational savings,
though some kinetic effects not captured (e.g. calculating bootstrapj).

» More sophisticated equations than idea/ magnetohydrodynamics.

« Diffusion terms added to mock up the underlying turbulent transport.

0.8

0.6}

Z(m)

04

0.0L

36 38 40 42 44 46 48

R (m) 3D-C1 code: Ferraro et al (2010)



e M3D-CI1 movie
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Sophisticated fluid & kinetic computations
are also used to simulate plasmas in space.

B T e

logT: 11.500 12.052 12.603 13.155

(d) X (AU)

40



 Kinetic reconnection movie
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Numerical optimization is central to the
design of modern stellarators.

Magnetic field lines
Plasma shape varied to extremize Coil shapes varied to produce the desired
* Confinement of particle orbits, plasma shape.

MHD stability,
Low plasma current,

42



Conclusions:
Is computational plasma physics right for you?

Need to know analytic plasma theory too, lots of algebra.

Need to keep up with numerical methods & libraries.

Need to spend lots of time dealing with e.g. stupid compiler errors.
Need to be very organized.

Can work anywhere with internet. (Nice for parents.)

Funding seems more stable than in experiment?

Coding & algebra = opportunities for “flow”.

Good 1f approximations like 3>>1 make you nervous.

Good 1f you like being omnipotent and omniscient.

You can work on exciting inter-disciplinary problems at the cutting
edge of physics, applied math, and computer science.
43



