DEUTERIUM NEUTRAL BEAM ORBITS IN NSTX-U NONAXISYMMETRIC VACUUM MAGNETIC FIELDS

Jonah Philion¹, Douglass Darrow²

¹Harvard University ²Princeton Plasma Physics Laboratory ¹708-668-5532, jonahphilion@college.harvard.edu

Abstract

Axisymmetry of the tokamak magnetic field provides good fast ion radial confinement. Perturbations from this symmetry could induce fast ion radial diffusion and loss. A nonaxisymmetric perturbation was chosen to model the effect of this symmetry loss on NSTX-U deuterium neutral beam ions. Passing and banana orbits in the perturbed field were simulated by integrating the Lorentz force over a duration shorter than the collision time of ions. Upon comparison with analogous orbits in the unperturbed field, the perturbation is shown to have a dispersive effect on the magnetic moment of particle orbit guiding centers. In particular, banana orbits acquire oscillating magnetic moments when subject to the nonaxisymmetric field. The behavior is modeled as a diffusion coefficient which varies with the magnetic moment and canonical angular momentum of the orbit.

Deuterium Neutral Beam Orbits in NSTX-U Nonaxisymmetric Vacuum Magnetic Fields

Motivation

The magnetic field in NSTX-U is generally assumed to be axisymmetric. However, discreteness of the 12 toroidal coils surrounding NSTX-U breaks this symmetry from SO(2) to C(12). A perturbation of this type can induce fast ion radial diffusion and loss.

This project explains, characterizes, and evaluates the extent of loss caused by such a perturbation. To study the extent and nature of this loss, the perturbation from the axisymmetric assumption is modeled by

integrating the Biot-Savart law over the twelve COIIS.

Left: Coils in red are toroidal. Their discreteness breaks SO(2) symmetry.

If ϕ is set to zero in the plane of one of the twelve coils, then the toroidal angle dependence is

$$\widetilde{\boldsymbol{B}}(r,\phi,z) = \widetilde{B_r}(r,z) \sin(2) + \widetilde{B_z}(r,z)$$

the "G-eqdsk-file" of EFIT code added to a scaling factor multiplied by the perturbation.

$$\boldsymbol{B}_{eq}(r,z) = \nabla \boldsymbol{Y}$$

The scaling factor is calculated to best fit the experimental data. Note that divergenceless of the equilibrium magnetic field is assured by construction.

$$\mathbf{B}(r,\phi,z) = \boldsymbol{B}_{eq}$$

sis is done on Mathematica to machine precision.

Perturbation

The magnetic ripple is fit using B-Splines on the domain .3<r<1.8 and -1.7<z<1.7.

Quantities assumed to be small in the adiabatic approximation are the curvature κ and characteristic length L.

¹Self-Consistent Equilibrium Model of low aspect-ratio toroidal plasma with energetic beam ions, Belova E.V. and Gorelenkov N.N. and Cheng C.Z., Phys. Plasmas 10, 3240 (2003); DOI: 10.1063/1.1592155 ²Hsu, James J. Y. Visual and Computational Plasma Physics. New Jersey: World Scientific, 2015. Print.

³Non-adiabatic behavior of particles in inhomogenous magnetic fields, Hastie, R. J. and Hobbs, G.D. and Taylor, J.B., Plasma Physics and Controlled Nuclear Fusion Research, 1, (1963)

Jonah Philion (Harvard), Douglass Darrow (NSTX-U)

Approach

 $(12\phi)\mathbf{\hat{r}} + \widetilde{B_{\phi}}(r,z)\cos(12\phi)\mathbf{\hat{\phi}}$ $z)\sin(12\phi)\mathbf{\hat{z}}$

Where $B_{\phi}(r,z)$ is defined to assure divergenceless of the perturbation. The total magnetic field in NSTX-U is then the equilibrium magnetic field as calculated from

 $\Psi \times \nabla \phi + g(\Psi) \nabla \phi$

 $_{q}(r,z) + \epsilon \widetilde{\boldsymbol{B}}(r,\phi,z)$

Fitted functions are granted continuous first and second derivatives in all cases. Fitting and all data analy-

⁴Self-consistent equilibrium model of low aspect-ratio toroidal plasma with energetic beam ions Belova, E. V. and Gorelenkov, N. N. and Cheng, C. Z., Physics of Plasmas, 10, 3240-3251 (2003), DOI:http://dx.doi. org/10.1063/1.1592155 ⁵Trajectories of charged particles trapped in Earth's magnetic field, Ozturk, M. Kaan, American Journal of Physics, 80, 420-428 (2012), DOI: 10.1119/1.3684537

NSTX-U

Results Nonaxisymmetric 90 0 00 0.00002 Birds eye view $\{(KE(t=0)-KE(t=.8*tf))/KE(t=0), -1.5252 \times 10^{-11}\}$ <mu>: , {0.491951, 0.519994, 0.553957, 0.558118, 0.571593, 0.594611, 0.590886, 0.575631}} <mu> vs. P_ph <mu> 0.60 0.58 0.56 0.54 0.52 0.50

{banana?, {0, 0, 0, 0, 0, 1, 1, 0}}

0.14 0.16 0.18 0.20

{(P_phi(t=0)-P_phi(t=.8*tf))/P_phi(t=0), 0.326815}

1 2 3 4 5 6 7 8

{AREA is, 0.00889647}

{delta mu:, 0.10266}

This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466. Phil Travis's minimal contribution to the creation of this poster was appreciated somewhat.

O)PPPL

Conclusions

$$\mu = \frac{mv_{\perp}^2}{2B} \qquad P_{\phi} = mr^2\dot{\phi} + q\psi$$