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Abstract

Axisymmetry of the tokamak magnetic field provides good fast ion radial confinement. Perturbations from this
symmetry could induce fast ion radial diffusion and loss. A nonaxisymmetric perturbation was chosen to model the
effect of this symmetry loss on NSTX-U deuterium neutral beam ions. Passing and banana orbits in the perturbed
field were simulated by integrating the Lorentz force over a duration shorter than the collision time of ions. Upon
comparison with analogous orbits in the unperturbed field, the perturbation is shown to have a dispersive effect
on the magnetic moment of particle orbit guiding centers. In particular, banana orbits acquire oscillating magnetic
moments when subject to the nonaxisymmetric field. The behavior is modeled as a diffusion coefficient which varies
with the magnetic moment and canonical angular momentum of the orbit.
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