Mechanical Design, Testing, and Simulation of Self-Aligning Gaussian Telescope and Test Stand for ITER LFS Reflectometer Diagnostic

Rachel Broughton¹, Michael Gomez², Ali Zolfaghari², Lewis Morris²
¹Rose-Hulman Institute of Technology, Terre Haute, IN; ²Princeton Plasma Physics Laboratory, Princeton, NJ

Motivation
- The Low Field Side Reflectometer diagnostic device will be used for ITER
 - Couple microwaves in and out across the vacuum windows
 - Movement of the vacuum vessel with respect to the waveguides
 - Thermal growth • slow movements
 - Vibrations/Disruptions • rapid movements

Background
This mechanism was begun, designed, and patented by Michael Gomez, Ali Zolfaghari, and Cara Bagley during the 2015 SULI program.

Self-Aligning Gaussian Telescope
- Apply Gaussian optics
 - One side of the waveguide remains fixed, the other side is free to move
 - Two identical, spherical mirrors
- Focal length
 - Link maintains a distance of 2*f between the mirrors
 - Distance from end of waveguide to mirror fixed at one focal length

Model
- Test Stand designed to hold waveguide and Self-Aligning Gaussian Telescope.
 - Simulate motions the mechanism will undergo at ITER
 - Original design altered to match set-up at General Atomics
 - Simplified to one waveguide and telescope mechanism

Analysis and Results
Simulations performed in ANSYS workbench. Refer to videos.

Rigid Body Dynamics
- Movement in the x- and z-directions to simulate thermal growth
- Final model will also allow movement in the y-direction
- Waveguide slides and rotates appropriately

Static Structural
- Yield strength of aluminum = 275 MPa
- Maximum stress on link = 122 MPa
- Factor of Safety = 2.2
- Motion in the correct directions
 - Tube slides in x-direction
 - Plate and clamp fixed

Future Work
- Assembly of the self-aligning scissors mechanism and stand
- The motions of the stand will be tested in order to simulate thermal expansion, thermal contractions, disruptions, and vibrations
 - Slow single- and multi-directional movement
 - Rapid multi-directional movement
 - Laser alignment
 - Natural frequency
- Send to General Atomics where the mechanism will undergo microwave testing
- Revise as necessary
- LFS Reflectometer diagnostic device ready to be used for ITER

Conclusions
- Based on the results from the simulations, the apparatus will function properly
- More progress required before the mechanism reaches the final destination of ITER

Acknowledgements
This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466. I would also like to thank Cara Bagley for her contribution to this project in the 2015 SULI program as well as A. Zolfaghari, M. Gomez, and L. Morris for their work on this project.

References