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High field superconducting magnets are a necessary component of high en-
ergy colliders, fusion devices, and other active experiments. When the wires
comprising the magnet su↵er structural damage, the critical current is dimin-
ished and thus the resultant magnetic field. Of the most commonly used su-
perconductors, Nb3Sn is characterized by the highest current density, J�, and
a significant susceptibility to internal strain. This internal strain is greatly de-
pendent on the existence of voids within both the copper matrix and filaments.
These voids are created withing the wire during the heat treatment process. A
MatLab model using randomly distributed elliptical voids will allow for a better
understanding of their e↵ects.
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Abstract

High field superconducting magnets are a necessary
component of high energy colliders, fusion devices,
and other active experiments. When the wires com-
prising the magnet su�er structural damage, the
critical current is diminished and thus the resultant
magnetic field. Of the most commonly used super-
conductors, Nb3Sn is characterized by the highest
current density, J

‡

, and a significant susceptibility
to internal strain. This internal strain is greatly de-
pendent on the existence of voids within both the
copper matrix and filaments. These voids are cre-
ated withing the wire during the heat treatment pro-
cess. A MatLab model using randomly distributed
elliptical voids will allow for a better understanding
of their e�ects.

Figure 1: A diagram of the setup.

Methodology

To form a complete picture of voids and their defects,
we created a two dimensional model of the wire using
the FEA capabilities of MatLab. Integration of the
random and elliptical voids was completed using the
MatLab functions rand and inpolygon. The former
creates an array of random numbers between 0 and
1, while the latter returns logical values for a given
set of query points and a defined set of polygons.
The PDE model was then created using command
line functions, rather than the GUI. A displacement
of 1 µm was applied to both the top and bottom of
the epoxy, while the left and right edges were kept
stationary. The pdesolve function was then used to
calculate the solution to the system of partial dif-
ferential equations, u. To convert this into stresses,
matrices were created defining the material proper-
ties at each position in the geometry.

Construction of the Model

•

Cross Section

• The following image was the basis for the geometry of the
model.

•

Geometry

• The geometry consists of a square, circle, and 151
hexagons. In the model the circle is represented by a
hectagon.

•

Mesh

• The mesh image below corresponds to the specific
geometry above. Rather than having the mesh contain
holes where the voids exist, the voids are meshed and
given material properties near 0.
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Mathematical Background

In a system constrained to the xy-plane the stresses
can be described by the following matrix equation
involving strains, the elastic modulus (‘,“) (E), and
Poisson’s ratio (‹).
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The strains are defined using the scalar displacement
functions u and v.
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After considering the balance of forces on the planar
object, the system of partial di�erential equations
may be written as below.

Ò · (c ¢ Òu) = 0

The only coe�cient of interest is the tensor c which
MatLab requires to be in the form of the vector given
below.

c̄ = {2G + µ, G, 0, G, 0, G, µ, 0,

0, µ, G, 0, G, 0, 0, 2G + µ}

Once u and v have been determined, the principal
stresses ‡1 and ‡2 may be calculated from the stan-
dard stresses. Finally the von Mises e�ective stress
can be found using the following equation.
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Results

The stresses calculated by this program agree with
previous work2; stress increases locally along the ma-
jor axis of the elliptical void. The following are two
plots generated by MatLab illustrating the results of
the our calculations on the geometry specified pre-
viously.

Figure 2: The von Mises stress.

Future Work

• Change the script creating the voids to allow for an exact
number of voids to be created, instead of designating a
maximum.

• Add a second method for creating voids that would allow
experimental data as an input.

• Determine a more accurate method for stress calculations.
Currently data is saved and then retrieved from a figure.

• Use this model to study correlation between data such as
irreversible strain limit and the local stress concentration
around the voids.
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