

Understanding the Plasma-Materials Interface in Fusion Devices

Angela M. Capece Princeton Plasma Physics Laboratory

June 12, 2015

Outline

- I. Overview of plasma-materials interactions
- II. Processes that occur at the materials interface
- III. Key PMI issues in fusion devices
- IV. Candidate materials for fusion reactors
- V. How we study surfaces
- VI. Conclusions

Plasmas are used for a variety of different applications

Fusion plasmas

- Clean energy source
- Hydrogen fuel extracted from seawater

Electric thrusters

- Used on 100's of satellites orbiting the earth
- Currently used on the Dawn mission to explore Ceres & Vesta

Plasma Medicine

- Used for sterilization
- May be used to treat antibiotic-resistant bacteria, cancer tumors

Plasmas are used for a variety of different applications

Fusion plasmas

- Clean energy source
- Hydrogen fuel extracted from seawater

All involve plasma in contact with a material

Electric thrusters

- Used on 100's of satellites orbiting the earth
- Currently used on the Dawn mission to explore Ceres & Vesta

Plasma Medicine

- Used for sterilization
- May be used to treat antibiotic-resistant bacteria, cancer tumors

Plasmas can be spectacularly destructive!

Erosion of molybdenum ion thruster grid

R.E. Wirz, IEEE Trans. Plasma Sci. (2008)

Plasma erosion of a tungsten cathode and tungsten crystal growth J.E. Polk & A.M. Capece, Appl. Surf. Sci. (submitted)

Tungsten tile in fusion device, before & after plasma exposure *z. Hartwig, MIT*

Melted tungsten tile

B. Lipschultz, Nucl. Fusion (2012)

Plasmas can be spectacularly destructive!

What happens when you try to contain a plasma?

- 1. The plasma affects the surface
- 2. The surface affects the plasma
- 3. The plasma and the material work together to do something useful

What happens when you try to contain a plasma?

- 1. The plasma affects the surface
- 2. The surface affects the plasma
- 3. The plasma and the material work together to do something useful

Five main processes that occur at the plasma-materials interface

- Positive Ion Neutralization (Recombination)
 - Ions that hit the surface are neutralized

$$e + A^{+} + S \rightarrow A + S$$

- 2. Absorption/Desorption (low energy, 1 eV)
 - Evaporation rate increases exponentially with temperature
- 3. Physical Sputtering (10-100 eV)
 - Independent of surface temperature
- 4. Implantation (1000 eV)
- 5. Reactions with/on a surface
 - Dependent on surface temperature

Absorption/Desorption

Reality is much more complex

Image from D. Whyte, http://psisc.org/mission

Quick review of fusion plasmas

To get hydrogen to fuse together, we need high temperature and pressure! → Plasma!

- Temperatures of 100 million K have been achieved!
- Use magnetic fields to keep the plasma together

The trouble with fusion is...

- Confining enough hydrogen
- For long enough times
- At sufficiently high temperatures

Two aspects:

1. How the plasma affects the material

Changes in the physical & chemical properties of the material can occur

Two aspects:

1. How the plasma affects the material

- Changes in the physical & chemical properties of the material can occur
- Heat loads
 - Average heat loads (e.g., from alpha particle heating, 10 MW/m^2)
 - Transient heat loads (from ELMs; on order of milliseconds; wall temps must be below melting point)
- Erosion of wall materials
 - Sputtering by ions and high energy neutrals, chemical reactions (erosion yield depends on material)
- Tritium retention (max allowable value of mass in the machine; rate of T saturation depends on material)
- Nuclear embrittlement, swelling, fuzz formation

Two aspects:

2. How the material affects the plasma

- Biggest issue: impurity concentration:
 - can result in fuel dilution, radiated power losses, deposition of material where it is not wanted

Two aspects:

2. How the material affects the plasma

- Biggest issue: impurity concentration:
 - can result in fuel dilution, radiated power losses, deposition of material where it is not wanted
- Fuel dilution from wall materials
 - impurities in the plasma can decrease fusion power; line radiation can change plasma temperature
 - pressure & temperature gradients near the wall can have negative effects on plasma stability and confinement

Large temperature gradients exist at the wall

- D⁺ neutralizes at the surface
- D atom is released into plasma at low temperature!
- This cools the plasma!
- Fusion reaction will extinguish

Some candidate materials and their properties

Graphite:

- Does not melt (sublimes)
- Erosion and transport occurs easily leading to C deposits
- Can trap large amounts of tritium

Beryllium:

- Low Z material
- Good thermal conductivity
- High sputter yields
- Low melting point

Tungsten:

- High Z material
- Low sputter yield
- High melting point

High Z materials (e.g. W, Mo):

- Poison the plasma
- Moderate uptake of tritium
- Good thermo-mechanical properties
- Low or negligible erosion at low plasma temperatures

Liquid metals

Advantages of liquid metals (lithium):

No erosion

No thermal fatigue

No neutron damage

Resilient again high heat fluxes
Refreshes the surface
Li concentration in the plasma is low

Li has shown to improve the plasma performance!

→ Very important for fusion!

Infrared image of liquid lithium a fusion device at PPPL.

Flowing liquid Li experiment at University of Illinois at Urbana-Champaign

But why does Li help?

Working hypothesis: Deuterium retention

High D retention → Low recycling → High edge temperature → Reduced temperature gradients

Recycling Process:

Li absorbs D⁺ ions and "retains" them better than other materials

But how is D retained in Li?

- Through volumetric conversion of Li to LiD (Baldwin & Doerner)
- 2. Through complexes that involve oxygen (Krstic, Allain, Taylor)

- Atoms at the surface behave differently than atoms in the bulk material.
- The surface provides an environment where unique chemistry can occur.

- Atoms at the surface behave differently than atoms in the bulk material.
- The surface provides an environment where unique chemistry can occur.

So, how do we study surfaces?

$$\rho = 10^{23} cm^{-3}$$

$$\rho_{s} \approx \rho^{\frac{2}{3}} \approx 10^{14} cm^{-2}$$

Surfaces contain ~10¹⁴ atoms/cm²

- Atoms at the surface behave differently than atoms in the bulk material.
- The surface provides an environment where unique chemistry can occur.

So, how do we study surfaces?

Challenge: Detect 10¹⁴ cm⁻² signal on a 10²³ cm⁻³ background

$$\rho = 10^{23} cm^{-3}$$

$$\rho_s \approx \rho^{\frac{2}{3}} \approx 10^{14} cm^{-2}$$

Surfaces contain ~10¹⁴ atoms/cm²

- Atoms at the surface behave differently than atoms in the bulk material.
- The surface provides an environment where unique chemistry can occur.

So, how do we study surfaces?

Surfaces contain ~10¹⁴ atoms/cm²

<u>Challenge</u>: Detect 10¹⁴ cm⁻² signal on a 10²³ cm⁻³ background.

<u>Solution</u>: Use probes that strongly interact with matter, such as as electrons, ions, and photons (X-rays, UV light).

Surface science provides fundamental information needed to understand PMI

Test stand instrumentation in the Surface Science & Technology Lab

Key variables affecting chemistry at surface:

- Pressure (residual gases)
- Temperature (plasma heating)
- Composition (Mo, Li, D, etc.)

Lab-based surface science experiments enable independent control of all variables

...something we cannot achieve in a tokamak or linear plasma device!

Surface science provides fundamental information needed to understand PMI

Test stand instrumentation in the Surface Science & Technology Lab

Key variables affecting chemistry at surface:

- Pressure (residual gases)
- Temperature (plasma heating)
- Composition (Mo, Li, D, etc.)

Lab-based surface science experiments enable independent control of all variables

...something we cannot achieve in a tokamak or linear plasma device!

Isolate effects of:

- Chemistry
- Incident particle fluxes and energies
- Substrate temperature
- Surface composition
- Morphology

Start simple and add complexity to bridge gap between model systems and tokamak environment

From the simple to the complex

Simple Model Experiments

Grain boundaries
Alloying elements: Ti, Zr, C
Surface roughness

Multiple species: H⁺, H₂⁺, H₃⁺ Increased flux: $10^{12} \rightarrow 10^{16}$ cm⁻² s⁻¹ Atoms, ions, or atoms + ions

Monoenergetic ion beam (Image of He ions on phosphor screen)

More Complex Systems

TZM Mo alloy

ECR plasma source

Surface science provides fundamental information needed to understand PMI

Test stand instrumentation in the Surface Science & Technology Lab

Auger electron spectroscopy

AAES gives elemental information (and also oxidation state)!

A.M. Capece 12/5/2014 29/37

AES

Temperature programmed desorption

Vacuum Chamber Wall

Temperature Programmed Desorption (TPD) Technique:

- Linear temperature ramp applied to sample
- Partial pressure of desorbing species measured
- Temperature of desorption peak relates to binding energy
- Area under pressure vs. time curve proportional to number of atoms desorbed

Temperature programmed desorption

Vacuum Chamber Wall

Area under pressure vs. time curve → # of atoms desorbed

TPD can be used to measure D retention!

Example: Desorption of Li from Mo

- Submonolayer Li film on TZM stable up to 1000 K
- Represents Li-Mo bonding
- Desorption energy ~2.7 eV

C.H. Skinner et al., JNM 438, S647 (2013)

Example: Desorption of Li from Mo

- Area under Li TPD curve increases with Li dose
- Dipole interactions lower the desorption energy (~2 eV)
- E_d is a function of coverage

C.H. Skinner et al., JNM 438, S647 (2013)

Example: Desorption of Li from Mo

- Thick Li films (multilayer) evaporate at 500 K
- Multilayer film represents Li-Li bonding
- Cohesive energy of metallic
 Li ~1.7 eV

C.H. Skinner et al., JNM 438, S647 (2013)

TPD can be used to determine D retention

TPD can be used to determine D retention

Key takeaway messages

- Plasma-materials interactions have great implications for a variety of applications including energy, propulsion, medicine, and nanomaterials
- The plasma and material are strongly coupled!
- Key PMI issues in fusion devices include: heat loading, erosion, fuel dilution, tritium retention, nuclear embrittlement
- So far, no perfect fusion material exists. Candidates are graphite, tungsten, beryllium, lithium
- Surface science can help to understand and diagnose the surface in model experiments that can help simulate the tokamak environment