
High Performance Visualization of f(x,y,t) Data

• GFDL runs large climate simulations and stores time-based
and grid-based data in large NetCDF files (>70 GB)

• Current solutions:
• ncview, VisIt
• Maps file into virtual memory; swapping is slow!

• Need streamlined visualization workflow
• Quicken analysis, increase productivity

• Write it in Python for maximum portability

• Real-time preview of a
dataset’s timesteps

• Works using PyOpenGL,
PyCUDA, and CUDA/GL
Interoperability

• Supports key bindings for
pause and reset in a pure
OpenGL window!

• Support arbitrary projections for display
• Involves polygon mapping onto a grid
• Would allow for viewing Earth from any direction

• View and slice N-dimensional time-dependent data
• Map images onto sphere for display as a globe

• OpenGL texture mapping
• Add satellite terrain image to land background

Motivation

Real-Time Visualization

Future Work

• This work was made possible by funding from the Department of
Energy for the Summer Undergraduate Laboratory Internship
(SULI) program. This work is supported by the US DOE Contract
No.DE-AC02-09CH11466

• We would like to thank our mentor Eliot Feibush (PPPL). We would
additionally like to thank Whit Anderson, Matthew Harrison, and
Youngrak Cho of GFDL for the opportunity to work on this project
this summer

Acknowledgements

• High-performance computing approach to visualizing
f(x,y,t) data

• Uses GPU and multicore systems to maximize computing
power

• Fast speeds allow for real-time interactive data preview
• Generality of software allows the visualization of any

f(x,y,t) dataset, not just ocean data
• Using Python with Tkinter for the GUI makes it portable
• Written in pure Python, with a few strings of CUDA C
• Already deployed and working on GFDL computers

• Using Anaconda made installation seamless

Conclusion

• Full movies available at http://w3.pppl.gov/~efeibush/cm/
• Anaconda https://store.continuum.io/cshop/anaconda/
• netcdf4-python https://github.com/Unidata/netcdf4-python
• PyCUDA http://mathema.tician.de/software/pycuda/
• PyOpenGL http://pyopengl.sourceforge.net/

References

Zachary Kaplan, Michael Knyszek, Matthew Lotocki, Eliot Feibush

• Need to maximize portability
• Which also means minimize dependencies and sysadmin

installation
• The standard visualization tools that support NetCDF files

in Python are just as bad as ncview and VisIt
• scipy is available but has the same issues

• Want to create both images and movies
• Want to support layering of datasets with transparency
• Want the generation process to be fast

Challenges

• Use the Anaconda environment
• Everyone builds a personal, local environment
• Manages Python packages for you and supports most

• For NetCDF reading, use netcdf4-python
• Needs on libnetcdf, but Anaconda handles it
• Does not map whole file

• Small memory footprint, fast reads of data
• Generation process

1. Apply colormap to slice of dataset (creates layer)
2. Run alpha compositing algorithm to merge layers
3. Use Python Imaging Library to create images
4. Use ffmpeg to create a movie from the images!

Solutions

1. Set up layers
• Load data files, select variables
• Choose/Create Colormaps

• Custom colormap backend
• Supports VisIt and Paraview

formats

2. Choose your region

• Interactive crop selection
of region to visualize

• Can index in original units
(latitude, etc.)

3. Select additional options
• Choose time steps to render
• Can set framerate,

output location, etc.
• Can select one of three methods:

• GPU, Multicore, Serial
• Live preview of a single layer

(see next section)

4. View summary
• See a summary of your

selections in a custom
configuration file format

• Can save configuration file
and run from terminal

5. Run!

User Interface & Workflow

Bathymetry Sea Surface Temp. Composited Image

But how did we make it 15000x faster?
• Use the GPU -> PyCUDA
• Take advantage of cores -> Python Processes
• Use numpy vector operations -> Major speedup!
• For portability, provide all three options for users

Processing speedup from 2½ minutes per image to 10 ms!

Sea Surface Salinity Zonal/Meridional Velocities

This work is supported by
the US DOE Contract

No.DE-AC02-09CH11466

http://w3.pppl.gov/~efeibush/cm/
http://w3.pppl.gov/~efeibush/cm/
http://w3.pppl.gov/~efeibush/cm/
https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
https://github.com/Unidata/netcdf4-python
https://github.com/Unidata/netcdf4-python
https://github.com/Unidata/netcdf4-python
https://github.com/Unidata/netcdf4-python
http://mathema.tician.de/software/pycuda/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/

