Waves in plasmas

Saskia Mordijck

What are Waves?

Regular waves in water

http://hema.ipfw.edu/Geopics/Framesrc/Water/waves.html

Waves are a periodic perturbation that transfers energy can be described in some circumstances by a linear approximation.
Waves occur around us. One example is the surfaces waves in the ocean

What are Waves?

Regular waves in water

What are Waves?

The wave characteristics can change based on its surroundings

We use the dispersion relationship to describe the relation between the wavelength and the frequency of the wave.

How do we describe waves mathematically

How do we describe waves mathematically

Wavenumber $k=2 \pi / \lambda$

How do we describe waves mathematically

Peanivechumber $k=2 \pi / \lambda$
Angular frequency $\omega=2 \pi / T=2 \pi f$
Phase velocity $\quad v_{p}=\omega / k$

Summary of waves in plasmas

- Plasma wave (no B-field necessary) in a cold plasma
- Ions are stationary
- Wave-particle interaction
- Plasma wave in non-cold plasma
- MHD waves (B-field)
- Perpendicular to the B-field
- Parallel to the B-field

Summary of waves in plasmas

- Plasma wave (no B-field necessary) in a cold plasma
- Ions are stationary
- Wave-particle interaction
- Plasma wave in non-cold plasma
- MHD waves (B-field)
- Perpendicular to the B-field
- Parallel to the B-field

The plasma wave in a cold plasma

The plasma wave : Similar to pendulum motion

The plasma wave : Similar to ball stuck in a valley

The plasma wave: Starting from force balance

The plasma wave: Starting from force balance

The plasma wave: Starting from force balance

The plasma wave: Starting from force balance

$\stackrel{\Delta r}{\longleftrightarrow}$

$$
m_{e} \frac{d v}{d t}=-e E
$$

The plasma wave: Starting from force balance

$\stackrel{\Delta r}{\longleftrightarrow}$

$$
m_{e} \frac{d v}{d t}=-e E
$$

$$
E \sim \frac{q}{\Delta r^{2}}=\frac{e n_{e}}{\Delta r^{2}}
$$

The plasma wave: Starting from force balance

$$
\begin{gathered}
\mathrm{E} \\
m_{e} \frac{d v}{d t}=-e E \\
E \sim \frac{q}{\Delta r^{2}}=\frac{e n_{e}}{\Delta r^{2}} \\
\frac{d^{2} r}{d t^{2}}=-\frac{e^{2} n_{e}}{m_{e}} \frac{1}{\Delta r^{2}}
\end{gathered}
$$

The plasma wave: Derivation similar to the pendulum principle

$$
m_{e} \frac{d v}{d t}=-e E
$$

$$
E \sim \frac{q}{\Delta r^{2}}=\frac{e n_{e}}{\Delta r^{2}}
$$

$$
\frac{d^{2} r}{d t^{2}}=-\frac{e^{2} n_{e}}{m_{e}} \frac{1}{\Delta r^{2}}
$$

Simple Harmonic Oscillator:

$$
\frac{d^{2} r}{d t^{2}}=-\omega r
$$

The plasma wave: Derivation similar to the pendulum principle

The plasma wave: Plasma frequency

Simple Harmonic Oscillator:

$$
\frac{d^{2} r}{d t^{2}}=-\omega .
$$

If we assume that Δr is close to 1 then:

$$
\frac{1}{\Delta r^{2}} \sim \Delta r
$$

The plasma wave: Plasma frequency

Simple Harmonic Oscillator:

$$
\frac{d^{2} r}{d t^{2}}=-\omega .
$$

If we assume that Δr is close to 1 then:

$$
\begin{gathered}
\frac{1}{\Delta r^{2}} \sim \Delta r \\
\omega_{p} \sim \frac{\boldsymbol{n}_{e} e^{2}}{\boldsymbol{m}_{\boldsymbol{e}}}
\end{gathered}
$$

The plasma wave: Plasma frequency

More complete picture of plasma wave in a cold plasma

More complete picture of plasma wave in a cold plasma

Equation of motion
$n m\left(\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \nabla \boldsymbol{v}\right)=n\left(q \boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right)$

More complete picture of plasma wave in a cold plasma

Equation of motion
$n m\left(\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \nabla \boldsymbol{v}\right)=n\left(q \boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right)$

Continuity equation

$$
\frac{\partial n}{\partial t}+\boldsymbol{\nabla} \cdot(n \boldsymbol{v})=0
$$

More complete picture of plasma wave in a cold plasma

Equation of motion
$n m\left(\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \nabla \boldsymbol{v}\right)=n\left(q \boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right)$

+ Maxwell's equations
Starting point: Unmagnetized, Cold plasma

More complete picture of plasma wave in a cold plasma

Equation of motion
$n m\left(\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \nabla \boldsymbol{v}\right)=n\left(q \boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right)$

+ Maxwell's equations
Starting point: Unmagnetized, Cold plasma

$$
n=n_{0}+\tilde{n} \quad \boldsymbol{v}=\boldsymbol{v}_{0}+\widetilde{\boldsymbol{v}} \quad \boldsymbol{E}=\boldsymbol{E}_{0}+\widetilde{\boldsymbol{E}} \quad \boldsymbol{B}=\boldsymbol{B}_{0}+\widetilde{\boldsymbol{B}}
$$

More complete picture of plasma wave in a cold plasma

Equation of motion
$n m\left(\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \nabla \boldsymbol{v}\right)=n\left(q \boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right)$

Starting point: Unmagnetized, Cold plasma

$$
n=n_{0}+\tilde{n} \quad \boldsymbol{v}=y_{0}+\widetilde{\boldsymbol{v}} \quad \boldsymbol{E}=\boldsymbol{F}_{0}+\widetilde{\boldsymbol{E}} \quad \boldsymbol{B}=\boldsymbol{P}_{0}+\widetilde{\boldsymbol{B}}
$$

Continuity equation

$$
\frac{\partial n}{\partial t}+\nabla \cdot(n \boldsymbol{v})=0
$$

+ Maxwell’s equations

More complete picture of plasma wave in a cold plasma

Equation of motion
$n m\left(\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \nabla \boldsymbol{v}\right)=n\left(q \boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right)$

Continuity equation

$$
\frac{\partial n}{\partial t}+\boldsymbol{\nabla} \cdot(n \boldsymbol{v})=0
$$

+ Maxwell's equations
Starting point: Unmagnetized, Cold plasma

$$
n=n_{0}+\tilde{n} \quad \boldsymbol{v}=y_{0}+\widetilde{\boldsymbol{v}} \quad \boldsymbol{E}=\boldsymbol{Z}_{0}+\widetilde{\boldsymbol{E}} \quad \boldsymbol{B}=\boldsymbol{P}_{0}+\widetilde{\boldsymbol{B}}
$$

Linearize and loose second order

$$
n_{0} m\left(\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}+\widetilde{\boldsymbol{v}} \nabla \widetilde{\boldsymbol{v}}\right)=n_{0}\left(q \widetilde{\boldsymbol{E}}+\frac{\widetilde{\boldsymbol{v}}}{c} \times \widetilde{\boldsymbol{B}}\right)
$$

More complete picture of plasma wave in a cold plasma

Equation of motion
$n m\left(\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \nabla \boldsymbol{v}\right)=n\left(q \boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right)$

Continuity equation

$$
\frac{\partial n}{\partial t}+\boldsymbol{\nabla} \cdot(n \boldsymbol{v})=0
$$

+ Maxwell's equations
Starting point: Unmagnetized, Cold plasma

$$
n=n_{0}+\tilde{n} \quad \boldsymbol{v}=y_{0}+\widetilde{\boldsymbol{v}} \quad \boldsymbol{E}=\boldsymbol{Z}_{0}+\widetilde{\boldsymbol{E}} \quad \boldsymbol{B}=\boldsymbol{P}_{0}+\widetilde{\boldsymbol{B}}
$$

Linearize and loose second order

$$
\begin{aligned}
& n_{0} m\left(\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}+\widetilde{\boldsymbol{v}} \nabla \widetilde{\boldsymbol{v}}\right)=n_{0}\left(q \widetilde{\boldsymbol{E}}+\frac{\widetilde{\boldsymbol{v}}}{c} \times \widetilde{\boldsymbol{B}}\right) \\
& \frac{\partial \tilde{n}}{\partial t}+\nabla \cdot\left(n_{0} \widetilde{\boldsymbol{v}}\right)=0
\end{aligned}
$$

More complete picture of plasma wave in a cold plasma

Equation of motion
$n m\left(\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \nabla \boldsymbol{v}\right)=n\left(q \boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right)$

Continuity equation

$$
\frac{\partial n}{\partial t}+\boldsymbol{\nabla} \cdot(n \boldsymbol{v})=0
$$

+ Maxwell's equations
Starting point: Unmagnetized, Cold plasma

$$
n=n_{0}+\tilde{n} \quad \boldsymbol{v}=\mathscr{y}_{0}+\widetilde{\boldsymbol{v}} \quad \boldsymbol{E}=\boldsymbol{Z}_{0}+\widetilde{\boldsymbol{E}} \quad \boldsymbol{B}=\boldsymbol{P}_{0}+\widetilde{\boldsymbol{B}}
$$

Linearize and loose second order

$$
\begin{aligned}
& n_{0} m\left(\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}+\widetilde{\boldsymbol{\nu}} \widetilde{\boldsymbol{v}}\right)=n_{0}\left(q \widetilde{\boldsymbol{E}}+\frac{\widetilde{\boldsymbol{v}}}{c} \times \widetilde{\boldsymbol{B}}\right) \\
& \frac{\partial \tilde{n}}{\partial t}+\nabla \cdot\left(n_{0} \widetilde{\boldsymbol{v}}\right)=0
\end{aligned}
$$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

Continuity equation
$\frac{\partial \tilde{n}}{\partial t}=-n_{0} \frac{\partial \widetilde{v}}{\partial r}$

Equation of motion

$$
m \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=q \widetilde{\boldsymbol{E}}
$$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

Continuity equation

$$
\frac{\partial \tilde{n}}{\partial t}=-n_{0} \frac{\partial \widetilde{v}}{\partial r}
$$

Maxwell equations linearized

$$
\begin{array}{lll}
\nabla \cdot \widetilde{\boldsymbol{E}}=4 \pi q \tilde{n} & \nabla \times \widetilde{\boldsymbol{E}}=-\frac{1}{c} \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t} & \\
\nabla \cdot \widetilde{\boldsymbol{B}}=0 & \nabla \times \widetilde{\boldsymbol{B}}=\frac{4 \pi}{c} \tilde{\boldsymbol{J}}+\frac{1}{c} \frac{\partial \widetilde{\boldsymbol{E}}}{\partial t} & \widetilde{\boldsymbol{J}}=q n_{0} \widetilde{\boldsymbol{v}}
\end{array}
$$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

Continuity equation

$$
\frac{\partial \tilde{n}}{\partial t}=-n_{0} \frac{\partial \widetilde{v}}{\partial r}
$$

Maxwell equations linearized

$$
\begin{array}{ll}
\nabla \cdot \widetilde{\boldsymbol{E}}=4 \pi q \tilde{n} & \nabla \times \widetilde{\boldsymbol{E}}=-\frac{1}{c} \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t} \\
\nabla \cdot \widetilde{\boldsymbol{B}}=0 & \nabla \times \widetilde{\boldsymbol{B}}=\frac{4 \pi}{c} \widetilde{\boldsymbol{J}}+\frac{1}{c} \frac{\partial \widetilde{\boldsymbol{E}}}{\partial t}
\end{array}
$$

Use Fourier decomposition:

$$
\widetilde{\boldsymbol{A}}=\widetilde{\boldsymbol{A}} \exp (i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t))
$$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

Continuity equation
$-i \omega \tilde{n}=-n_{0} i \boldsymbol{k} \cdot \widetilde{\boldsymbol{v}}$

Equation of motion
$-i \omega m \widetilde{\boldsymbol{v}}=q \widetilde{\boldsymbol{E}}$

Maxwell equations linearized

$$
\begin{array}{ll}
i \boldsymbol{k} \cdot \widetilde{\boldsymbol{E}}=4 \pi q \tilde{n} & \\
i \boldsymbol{k} \times \widetilde{\boldsymbol{E}}=\frac{1}{c} i \omega \widetilde{\boldsymbol{B}} & \\
i \boldsymbol{k} \cdot \widetilde{\boldsymbol{B}}=0 & \\
i \boldsymbol{k} \times \widetilde{\boldsymbol{B}}=\frac{4 \pi}{c} \widetilde{\boldsymbol{J}}-\frac{i \omega}{c} \widetilde{\boldsymbol{E}} & \widetilde{\boldsymbol{J}}=q n_{0} \widetilde{\boldsymbol{v}}
\end{array}
$$

Use Fourier decomposition:

$$
\widetilde{\boldsymbol{A}}=\widetilde{\boldsymbol{A}} \exp (i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t))
$$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

Continuity equation
$-i \omega \tilde{n}=-n_{0} i \boldsymbol{k} \cdot \widetilde{\boldsymbol{v}}$

Equation of motion
$-i \omega m \widetilde{\boldsymbol{v}}=q \widetilde{\boldsymbol{E}}$

Maxwell equations linearized

$$
\begin{array}{ll}
i \boldsymbol{k} \cdot \widetilde{\boldsymbol{E}}=4 \pi q \tilde{n} & i \boldsymbol{k} \times \widetilde{\boldsymbol{E}}=\frac{1}{c} i \omega \widetilde{\boldsymbol{B}} \\
i \boldsymbol{k} \cdot \widetilde{\boldsymbol{B}}=0 & i \boldsymbol{k} \times \widetilde{\boldsymbol{B}}=\frac{4 \pi}{c} q n_{0} \widetilde{\boldsymbol{v}}-\frac{i \omega}{c} \widetilde{\boldsymbol{E}}
\end{array}
$$

Use Fourier decomposition:

$$
\widetilde{\boldsymbol{A}}=\widetilde{\boldsymbol{A}} \exp (i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t))
$$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

Continuity equation
$-i \omega \tilde{n}=-n_{0} i \boldsymbol{k} \cdot \widetilde{\boldsymbol{v}}$

Equation of motion
$-i \omega m \widetilde{\boldsymbol{v}}=q \widetilde{\boldsymbol{E}}$

Maxwell equations linearized

$$
\begin{array}{ll}
i \boldsymbol{k} \cdot \widetilde{\boldsymbol{E}}=4 \pi q \tilde{n} \\
i \boldsymbol{k} \cdot \widetilde{\boldsymbol{B}}=0 \quad \frac{i c}{\omega} \boldsymbol{k} \times \boldsymbol{k} \times \widetilde{\boldsymbol{E}}=\frac{4 \pi}{c} q n_{0} \widetilde{\boldsymbol{v}}-\frac{i \omega}{c} \widetilde{\boldsymbol{E}}
\end{array}
$$

Use Fourier decomposition:

$$
\widetilde{\boldsymbol{A}}=\widetilde{\boldsymbol{A}} \exp (i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t))
$$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

Continuity equation
Equation of motion
$-i \omega \tilde{n}=-n_{0} i \boldsymbol{k} \cdot \tilde{\boldsymbol{v}}$

Maxwell equations linearized

$$
\begin{array}{ll}
i \boldsymbol{k} \cdot \widetilde{\boldsymbol{E}}=4 \pi q \tilde{n} \\
i \boldsymbol{k} \cdot \widetilde{\boldsymbol{B}}=0 \quad \frac{c}{\omega} \boldsymbol{k} \times \boldsymbol{k} \times \widetilde{\boldsymbol{E}}=\frac{4 \pi n_{0} q^{2}}{\omega m c} \widetilde{\boldsymbol{E}}-\frac{\omega}{c} \widetilde{\boldsymbol{E}}
\end{array}
$$

Use Fourier decomposition:

$$
\widetilde{\boldsymbol{A}}=\widetilde{\boldsymbol{A}} \exp (i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t))
$$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

Continuity equation
Equation of motion
$-i \omega \tilde{n}=-n_{0} i \boldsymbol{k} \cdot \tilde{\boldsymbol{v}}$

Maxwell equations linearized

$$
\begin{array}{ll}
i \boldsymbol{k} \cdot \widetilde{\boldsymbol{E}}=4 \pi q \tilde{n} \\
i \boldsymbol{k} \cdot \widetilde{\boldsymbol{B}}=0 & \boldsymbol{k} \times \boldsymbol{k} \times \widetilde{\boldsymbol{E}}=\frac{4 \pi n_{0} q^{2}}{m c^{2}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}}
\end{array}
$$

Use Fourier decomposition:

$$
\widetilde{\boldsymbol{A}}=\widetilde{\boldsymbol{A}} \exp (i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t))
$$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

Continuity equation
$-i \omega \tilde{n}=-n_{0} i \boldsymbol{k} \cdot \tilde{\boldsymbol{v}}$

Maxwell equations linearized

$$
\omega_{p}^{2}=\frac{4 \pi n_{0} q^{2}}{m}
$$

$i \boldsymbol{k} \cdot \widetilde{\boldsymbol{E}}=4 \pi q \tilde{n}$
Electro-Magnetic waves
$i \boldsymbol{k} \cdot \widetilde{\boldsymbol{B}}=0$

$$
\boldsymbol{k}(\boldsymbol{k} \cdot \widetilde{\boldsymbol{E}})-\boldsymbol{k}^{2} \widetilde{\boldsymbol{E}}=\underbrace{\frac{4 \pi n_{0} q^{2}}{m c^{2}}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}}
$$

Use Fourier decomposition:

$$
\widetilde{\boldsymbol{A}}=\widetilde{\boldsymbol{A}} \exp (i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t))
$$

$$
\frac{\omega_{p}^{2}}{c^{2}}
$$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

$-\boldsymbol{k}^{\mathbf{2}} \widetilde{\boldsymbol{E}}=\frac{\omega_{p}^{2}}{c^{2}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}}$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

$-\boldsymbol{k}^{2} \widetilde{\boldsymbol{E}}=\frac{\omega_{p}^{2}}{c^{2}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}} \Rightarrow k^{2}=\frac{\omega^{2}}{c^{2}}-\frac{\omega_{p}^{2}}{c^{2}}$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

$-\boldsymbol{k}^{2} \widetilde{\boldsymbol{E}}=\frac{\omega_{p}^{2}}{c^{2}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}} \Rightarrow k^{2}=\frac{\omega^{2}}{c^{2}}-\frac{\omega_{p}^{2}}{c^{2}} \quad \Rightarrow k^{2}=\frac{\omega^{2}}{c^{2}}\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

$-\boldsymbol{k}^{\mathbf{2}} \widetilde{\boldsymbol{E}}=\frac{\omega_{p}^{2}}{c^{2}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}} \Rightarrow k^{2}=\frac{\omega^{2}}{c^{2}}-\frac{\omega_{p}^{2}}{c^{2}} \Rightarrow k^{2}=\frac{\omega^{2}}{c^{2}}\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)$
Dispersion relationship

$$
\omega^{2}=\omega_{p}^{2}+c^{2} k^{2}
$$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

$-\boldsymbol{k}^{\mathbf{2}} \widetilde{\boldsymbol{E}}=\frac{\omega_{p}^{2}}{c^{2}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}} \Rightarrow k^{2}=\frac{\omega^{2}}{c^{2}}-\frac{\omega_{p}^{2}}{c^{2}} \Rightarrow k^{2}=\frac{\omega^{2}}{c^{2}}\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)$
Dispersion relationship

$$
\omega^{2}=\omega_{p}^{2}+c^{2} k^{2}
$$

Plasma frequency

$$
\omega_{p}^{2}=\frac{4 \pi n_{0} q^{2}}{m}
$$

More complete picture of plasma wave in a cold plasma: linearized equations in 1D

$-\boldsymbol{k}^{\mathbf{2}} \widetilde{\boldsymbol{E}}=\frac{\omega_{p}^{2}}{c^{2}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}} \Rightarrow k^{2}=\frac{\omega^{2}}{c^{2}}-\frac{\omega_{p}^{2}}{c^{2}} \Rightarrow k^{2}=\frac{\omega^{2}}{c^{2}}\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)$
Dispersion relationship

$$
\omega^{2}=\omega_{p}^{2}+c^{2} k^{2}
$$

$\begin{array}{ll}\text { Plasma frequency } & \begin{array}{l}\text { This can be used to } \\ \text { measure density }\end{array} \\ \omega_{p}^{2}=\frac{4 \pi n_{0} q^{2}}{m} & \end{array}$

Density cut-off: waves to probe density

Density cut-off: waves to probe density

$$
\boldsymbol{\omega}_{\boldsymbol{p}} \sim \sqrt{\boldsymbol{n}_{\boldsymbol{e}}}
$$

Density cut-off: waves to probe density

Density cut-off: waves to probe density

Summary of the plasma wave

In a cold plasma, electrons oscillate at a natural frequency (the plasma frequency) while the ions remain

The plasma frequency depends on the density and can thus be used to give information about the plasma density

$$
\omega=\omega_{p}
$$

Summary of waves in plasmas

- Plasma wave (no B-field necessary) in a cold plasma
- Ions are stationary
- Wave-particle interaction
- Plasma wave in non-cold plasma
- MHD waves (B-field)
- Perpendicular to the B-field
- Parallel to the B-field

Interaction of waves and particles : no interaction

$$
v_{p}=\frac{\omega}{k}<v_{t h}
$$

\widetilde{E}

Particle is too fast to see the Electric field

$$
-\boldsymbol{k}^{\mathbf{2}} \widetilde{\boldsymbol{E}}=\frac{\omega_{p}^{2}}{c^{2}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}}
$$

Interaction of waves and particles: trapped particle

$$
v_{p}=\frac{\omega}{k}>v_{t h}
$$

\widetilde{E}

Particle is too slow and gets trapped

$$
-\boldsymbol{k}^{\mathbf{2}} \widetilde{\boldsymbol{E}}=\frac{\omega_{p}^{2}}{c^{2}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}}
$$

Interaction of waves and particles: resonance

$$
v_{p}=\frac{\omega}{k} \sim v_{t h}
$$

$\widetilde{E} \quad \mathbf{V}_{\text {th }}$

Particle has the right speed
and gets accelerated by the electric field

$$
-\boldsymbol{k}^{\mathbf{2}} \widetilde{\boldsymbol{E}}=\frac{\omega_{p}^{2}}{c^{2}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}}
$$

Interaction of waves and particles : resonant particles can give energy to the wave

$$
v_{p}=\frac{\omega}{k} \sim v_{t h}
$$

$\widetilde{\boldsymbol{E}}$
$\mathbf{V}_{\text {th }}$

Particle has the right speed
and gets accelerated by the electric field

$$
-\boldsymbol{k}^{\mathbf{2}} \widetilde{\boldsymbol{E}}=\frac{\omega_{p}^{2}}{c^{2}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}}
$$

Interaction of waves and particles : the wave can also give energy to the particles

$$
v_{p}=\frac{\omega}{k} \sim v_{t h}
$$

\widetilde{E}
$\mathbf{V}_{\text {th }}$

Particle has the right speed
and gets accelerated by the electric field

$$
-\boldsymbol{k}^{\mathbf{2}} \widetilde{\boldsymbol{E}}=\frac{\omega_{p}^{2}}{c^{2}} \widetilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}} \widetilde{\boldsymbol{E}}
$$

Summary wave particle interaction

$v_{\text {th }}$ Waves $\tilde{\text { and }}$ particles interact in a plasma
So particle motion can give energy to the wave, which can drive instabilities

On the other hand, waves can be used to give energy to and gets acceleratecparticles (see next talk)

$$
-k^{2} \widetilde{E}=\frac{\omega_{p}^{2}}{c^{2}} \widetilde{E}-\frac{\omega^{2}}{c^{2}} \widetilde{E}
$$

Summary of waves in plasmas

- Plasma wave (no B-field necessary) in a cold plasma
- Ions are stationary
- Wave-particle interaction
- Plasma wave in non-cold plasma
- MHD waves (B-field)
- Perpendicular to the B-field
- Parallel to the B-field

Plasma wave in a non-cold plasma: linearized equations in 1D

Continuity equation
$\frac{\partial \tilde{n}}{\partial t}=-n_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial r}$

Equation of motion
$m \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=q \widetilde{\boldsymbol{E}}$

Plasma wave in a non-cold plasma: linearized equations in 1D

Continuity equation
$\frac{\partial \tilde{n}}{\partial t}=-n_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial r}$

Equation of motion
$m \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=q \widetilde{\boldsymbol{E}}+\frac{\nabla \tilde{p}}{n_{0}}$

Isothermal
$\tilde{p}=\tilde{n} T$

Plasma wave in a non-cold plasma: linearized equations in 1D

Continuity equation

$$
\frac{\partial \tilde{n}}{\partial t}=-n_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial r}
$$

Maxwell equations linearized

$$
\begin{array}{ll}
\nabla \cdot \widetilde{\boldsymbol{E}}=4 \pi q \tilde{n} & \nabla \times \widetilde{\boldsymbol{E}}=-\frac{1}{c} \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t} \\
\nabla \cdot \widetilde{\boldsymbol{B}}=0 & \nabla \times \widetilde{\boldsymbol{B}}=\frac{4 \pi}{c} \tilde{\boldsymbol{J}}+\frac{1}{c} \frac{\partial \widetilde{\boldsymbol{E}}}{\partial t}
\end{array} \quad \widetilde{\boldsymbol{J}}=q n_{0} \widetilde{\boldsymbol{v}}
$$

Plasma wave in a non-cold plasma: linearized equations in 1D

Continuity equation

$$
\frac{\partial \tilde{n}}{\partial t}=-n_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial r}
$$

Maxwell equations linearized

$$
\begin{array}{ll}
\nabla \cdot \widetilde{\boldsymbol{E}}=4 \pi q \tilde{n} & \nabla \times \widetilde{\boldsymbol{E}}=-\frac{1}{c} \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t} \\
\nabla \cdot \widetilde{\boldsymbol{B}}=0 & \nabla \times \widetilde{\boldsymbol{B}}=\frac{4 \pi}{c} \widetilde{\boldsymbol{J}}+\frac{1}{c} \frac{\partial \widetilde{\boldsymbol{E}}}{\partial t}
\end{array}
$$

Use Fourier decomposition:

$$
\widetilde{\boldsymbol{A}}=\widetilde{\boldsymbol{A}} \exp (i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t))
$$

Plasma wave in a non-cold plasma: linearized equations in 1D

Continuity equation
$\frac{\partial \tilde{n}}{\partial t}=-n_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial r}$

Equation of motion
$m \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=q \widetilde{\boldsymbol{E}}+\frac{\nabla \tilde{p}}{n_{0}}$

Isothermal
$\tilde{p}=\tilde{n} T$

Plasma wave in a non-cold plasma: linearized equations in 1D

Continuity equation
$\frac{\partial \tilde{n}}{\partial t}=-n_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial r}$
$\frac{\partial^{2} \tilde{n}}{\partial t^{2}}=-\frac{n_{0} q}{m} \nabla \cdot \widetilde{\boldsymbol{E}}+\frac{n_{0} \nabla^{2} \tilde{p}}{n_{0} m}$

Equation of motion

$$
m \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=q \widetilde{\boldsymbol{E}}+\frac{\nabla \tilde{p}}{n_{0}}
$$

Isothermal
$\tilde{p}=\tilde{n} T$

Plasma wave in a non-cold plasma: linearized equations in 1D

Continuity equation

$$
\frac{\partial^{2} \tilde{n}}{\partial t^{2}}=-\frac{n_{0} q}{m} \nabla \cdot \widetilde{\boldsymbol{E}}+\frac{n_{0} \nabla^{2} \tilde{p}}{n_{0} m}
$$

Equation of motion

$$
m \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=q \widetilde{\boldsymbol{E}}+\frac{\nabla \tilde{p}}{n_{0}}
$$

Isothermal
$\tilde{p}=\tilde{n} T$
$\nabla \cdot \widetilde{\boldsymbol{E}}=4 \pi q \tilde{n}$

$$
\begin{aligned}
& \frac{\partial \tilde{n}}{\partial t}=-n_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial r} \\
& \downarrow
\end{aligned}
$$

Plasma wave in a non-cold plasma: linearized equations in 1D

Continuity equation
$\frac{\partial \tilde{n}}{\partial t}=-n_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial r}$
$\frac{\partial^{2} \tilde{n}}{\partial t^{2}}=-\frac{n_{0} q}{m} \nabla \cdot \widetilde{\boldsymbol{E}}+\frac{n_{0} \nabla^{2} \tilde{p}}{n_{0} m}$
\square
$\frac{\partial^{2} \tilde{n}}{\partial t^{2}}=-\frac{4 \pi n_{0} q^{2} \tilde{n}}{m}+\frac{T \nabla^{2} \tilde{n}}{m}$

Equation of motion
$m \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=q \widetilde{\boldsymbol{E}}+\frac{\nabla \tilde{p}}{n_{0}}$

Isothermal
$\tilde{p}=\tilde{n} T$
$\nabla \cdot \widetilde{\boldsymbol{E}}=4 \pi q \tilde{n}$

Plasma wave in a non-cold plasma: linearized equations in 1D

Continuity equation

$\frac{\partial^{2} \tilde{n}}{\partial t^{2}}=-\frac{n_{0} q}{m} \nabla \cdot \widetilde{\boldsymbol{E}}+\frac{n_{0} \nabla^{2} \tilde{p}}{n_{0} m}$

$\frac{\partial^{2} \tilde{n}}{\partial t^{2}}=-\frac{4 \pi n_{0} q^{2} \tilde{n}}{m}+\frac{T \nabla^{2} \tilde{n}}{m}$

$$
\frac{\partial^{2} \tilde{n}}{\partial t^{2}}=-\omega_{p}^{2} \tilde{n}+v_{t h}^{2} \nabla^{2} \tilde{n}
$$

Plasma wave in a non-cold plasma: linearized equations in 1D

Continuity equation

$\frac{\partial^{2} \tilde{n}}{\partial t^{2}}=-\frac{n_{0} q}{m} \nabla \cdot \widetilde{\boldsymbol{E}}+\frac{n_{0} \nabla^{2} \tilde{p}}{n_{0} m}$

$\frac{\partial^{2} \tilde{n}}{\partial t^{2}}=-\frac{4 \pi n_{0} q^{2} \tilde{n}}{m}+\frac{T \nabla^{2} \tilde{n}}{m}$

Equation of motion
$m \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=q \widetilde{\boldsymbol{E}}+\frac{\nabla \widetilde{p}}{n_{0}}$
Isothermal
$\tilde{p}=\tilde{n} T$

Plasma oscillation
Thermalization

$$
\frac{\partial^{2} \tilde{n}}{\partial t^{2}}=-\omega_{p}^{2} \tilde{n}+v_{t h}^{2} \nabla^{2} \tilde{n}
$$

Plasma wave in a non-cold plasma: linearized equations in 1D

$\omega \gg \omega_{p}$
$\omega \ll \omega_{p}$

Plasma oscillations are too fast to be screened

Plasma response is trying to screen test charge

Plasma oscillation

$$
\frac{\partial^{2} \tilde{n}}{\partial t^{2}}=-\omega_{p}^{2} \tilde{n}+v_{t h}^{2} \nabla^{2} \tilde{n}
$$

Plasma wave in a non-cold plasma: linearized equations in 1D

Including a non-zero temperature changes the dispersion relationship

Now particles can be screened, depending on the frequency of the wave with respect to the plasma wave frequency $_{\tilde{n}}$

$$
\frac{n}{\partial t^{2}}=-\omega_{p}^{2} \tilde{n}+v_{t h}^{2} \nabla^{2} \tilde{n}
$$

Summary of waves in plasmas

- Plasma wave (no B-field necessary) in a cold plasma
- Ions are stationary
- Wave-particle interaction
- Plasma wave in non-cold plasma
- MHD waves (B-field)
- Perpendicular to the B-field
- Parallel to the B-field

Simple MHD waves : B-field is included

Parallel propagation

$\boldsymbol{k}=k \hat{\mathbf{z}}$
Magnetosonic

The shear Alfven wave

Wave propagation in direction of magnetic field and incompressible
Assumption:
$\boldsymbol{k}=k \hat{\mathbf{z}}$
$\boldsymbol{\nabla} \cdot \boldsymbol{v}=0$

The shear Alfven wave

Wave propagation in direction of magnetic field and incompressible
Assumption:

$$
\boldsymbol{k}=k \hat{\mathbf{z}}
$$

$$
\nabla \cdot v=0
$$

Linearized equations:

$$
\rho_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\nabla\left(\tilde{p}+\frac{\tilde{B}^{2}}{8 \pi}\right)+\boldsymbol{B}_{\mathbf{0}} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4 \pi}
$$

$$
\frac{\partial \widetilde{B}}{\partial t}=-\boldsymbol{B}_{\mathbf{0}} \cdot \nabla \widetilde{\boldsymbol{v}}
$$

The shear Alfven wave

Wave propagation in direction of magnetic field and incompressible
Assumption:

$$
\boldsymbol{k}=k \hat{\mathbf{z}}
$$

$$
\nabla \cdot v=0
$$

Linearized equations:

$$
\begin{array}{ll}
\rho_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\nabla\left(\tilde{p}+\frac{\tilde{B}^{2}}{8 \pi}\right)+\boldsymbol{B}_{\mathbf{0}} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4 \pi} & \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t}=-\boldsymbol{B}_{\mathbf{0}} \cdot \nabla \widetilde{\boldsymbol{v}} \\
\nabla \cdot\left(\rho_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\nabla\left(\tilde{p}+\frac{\widetilde{B}^{2}}{8 \pi}\right)+\boldsymbol{B}_{\mathbf{0}} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4 \pi}\right) &
\end{array}
$$

The shear Alfven wave

Wave propagation in direction of magnetic field and incompressible
Assumption:

$$
\boldsymbol{k}=k \hat{\mathbf{z}}
$$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{v}=0
$$

Linearized equations:
$\rho_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\nabla\left(\tilde{p}+\frac{\widetilde{B}^{2}}{8 \pi}\right)+\boldsymbol{B}_{\mathbf{0}} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4 \pi}$

$$
\frac{\partial \widetilde{\boldsymbol{B}}}{\partial t}=-\boldsymbol{B}_{\mathbf{0}} \cdot \nabla \widetilde{\boldsymbol{v}}
$$

$\nabla \cdot\left(\rho_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\nabla\left(\tilde{p}+\frac{\widetilde{B}^{2}}{8 \pi}\right)+\boldsymbol{B}_{\mathbf{0}} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4 \pi}\right)$
$\rho_{0} \frac{\partial \nabla \cdot \widetilde{\boldsymbol{v}}}{\partial t}=\nabla^{2}\left(\tilde{p}+\frac{\tilde{B}^{2}}{8 \pi}\right)+\boldsymbol{B}_{\mathbf{0}} \cdot \frac{\nabla \nabla \cdot \widetilde{\boldsymbol{B}}}{4 \pi}$

The shear Alfven wave

Wave propagation in direction of magnetic field and incompressible
Assumption: $\begin{gathered}\boldsymbol{k}=k \hat{\mathbf{z}} \quad \boldsymbol{\nabla} \cdot \boldsymbol{v}=0\end{gathered}$
Linearized equations:
$\rho_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\nabla\left(\tilde{p}+\frac{\widetilde{B}^{2}}{8 \pi}\right)+\boldsymbol{B}_{\mathbf{0}} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4 \pi}$

$$
\frac{\partial \widetilde{\boldsymbol{B}}}{\partial t}=-\boldsymbol{B}_{\mathbf{0}} \cdot \nabla \widetilde{\boldsymbol{v}}
$$

$\nabla \cdot\left(\rho_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\nabla\left(\tilde{p}+\frac{\widetilde{B}^{2}}{8 \pi}\right)+\boldsymbol{B}_{\mathbf{0}} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4 \pi}\right)$
$\rho_{0} \frac{\partial \nabla \cdot \not \sigma}{\partial t}=\nabla^{2}\left(\tilde{p}+\frac{\tilde{B}^{2}}{8 \pi}\right)+\boldsymbol{B}_{\mathbf{0}} \cdot \frac{\nabla \nabla / \widetilde{\boldsymbol{B}}}{4 \pi}$

The shear Alfven wave

Wave propagation in direction of magnetic field and incompressible
Assumption:
$\boldsymbol{k}=k \hat{\mathbf{z}}$
$\boldsymbol{\nabla} \cdot \boldsymbol{v}=0$

$$
\tilde{p}+\frac{\tilde{B}^{2}}{8 \pi}=0
$$

The shear Alfven wave

Wave propagation in direction of magnetic field and incompressible
Assumption: $\quad \boldsymbol{k}=k \hat{\mathbf{z}}$
Linearized equations in 1D:

$$
\rho_{0} \frac{\partial \tilde{v}}{\partial t}=\nabla\left(\tilde{p} y \frac{\tilde{S}^{2}}{8 \pi}\right)+\frac{B_{0}}{4 \pi} \frac{\partial \tilde{B}}{\partial z}
$$

$$
\frac{\partial \widetilde{B}}{\partial t}=-B_{0} \frac{\partial \tilde{v}}{\partial z}
$$

The shear Alfven wave

Wave propagation in direction of magnetic field and incompressible
Assumption: $\quad \boldsymbol{k}=k \widehat{\mathbf{z}}$

$$
\begin{aligned}
\rho_{0} \frac{\partial \tilde{v}}{\partial t} & =\nabla\left(\tilde{p} y / \frac{\tilde{b}^{2}}{8 \pi}\right)+\frac{B_{0}}{4 \pi} \frac{\partial \tilde{B}}{\partial z} \\
\frac{\partial^{2} \tilde{v}}{\partial t^{2}} & =\underbrace{\frac{B_{0}^{2}}{4 \pi \rho_{0}}}_{v_{A}^{2}} \frac{\partial^{2} \tilde{v}}{\partial z^{2}}
\end{aligned} \quad \frac{\partial \tilde{B}}{\partial t}=-B_{0} \frac{\partial \tilde{v}}{\partial z}
$$

The shear Alfven wave

Wave propagation in direction of magnetic field and incompressible
Assumption: $\quad \boldsymbol{k}=k \hat{\boldsymbol{z}} \quad \boldsymbol{\nabla} \cdot \boldsymbol{v}$

$$
\frac{B / 4 \pi}{\rho_{0} / B} \quad \text { tension-in-line }
$$

It is a little bit like 'plucking': $\quad B_{0} \perp \tilde{v}$

The Acoustic wave

Wave propagation in direction of magnetic field and compressible
Assumption:
$\boldsymbol{k}=k \hat{\mathbf{z}}$
$\boldsymbol{\nabla} \cdot \boldsymbol{v} \neq 0$

The Acoustic wave

Wave propagation in direction of magnetic field and compressible
Assumption:

$$
\boldsymbol{k}=k \hat{\mathbf{z}}
$$

$$
\nabla \cdot v \neq 0
$$

Linearized equations (and jumping a few steps):
$\rho_{0} \frac{\partial \widetilde{v}}{\partial t}=\frac{\partial \tilde{p}}{\partial z}-\frac{\partial}{\partial z} B_{0} \tilde{B} / 4 \pi+\frac{\partial}{\partial z} B_{0} \tilde{B} / 4 \pi \quad \frac{\partial \widetilde{B}_{z}}{\partial t}=\frac{B_{0} \partial \tilde{v}}{\partial z}-\frac{B_{0} \partial \tilde{v}}{\partial z}$

The Acoustic wave

Wave propagation in direction of magnetic field and compressible
Assumption:

$$
\boldsymbol{k}=k \hat{\mathbf{z}}
$$

$$
\nabla \cdot v \neq 0
$$

Linearized equations (and jumping a few steps):
$\rho_{0} \frac{\partial \widetilde{v}}{\partial t}=\frac{\partial \tilde{p}}{\partial z}-\frac{\partial}{\partial z} B B_{0} \tilde{B} / 4 \pi+\frac{\partial}{\partial z} B / B / 4 \pi$

$$
\frac{\partial \tilde{B}_{z}}{\partial t}=\frac{B_{0} \partial t}{\partial z}-\frac{B_{0} \partial \sigma}{\partial z}
$$

The Acoustic wave

Wave propagation in direction of magnetic field and compressible
Assumption:

$$
\boldsymbol{k}=k \hat{\mathbf{z}}
$$

$$
\nabla \cdot v \neq 0
$$

Linearized equations (and jumping a few steps):
$\rho_{0} \frac{\partial \widetilde{v}}{\partial t}=\frac{\partial \tilde{p}}{\partial z}-\frac{\partial}{\partial z} B \tilde{B} / 4 \pi+\frac{\partial}{\partial z} B \rho_{B} / 4 \pi$

$$
\frac{\partial \tilde{B}_{z}}{\partial t}=\frac{B_{0} \partial t}{\partial z}-\frac{B_{0} \partial t}{\partial z}
$$

Link pressure to density and use continuity equation + math:

$$
\frac{\partial^{2} \tilde{\rho}}{\partial t^{2}}=\frac{\gamma p_{0}}{\rho_{0}} \frac{\partial^{2} \tilde{\rho}}{\partial z^{2}}
$$

The Acoustic wave

Wave propagation in direction of magnetic field and compressible
Assumption:

$$
\boldsymbol{k}=k \hat{\mathbf{z}}
$$

$$
\nabla \cdot v \neq 0
$$

Linearized equations (and jumping a few steps):
$\rho_{0} \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\frac{\partial \tilde{p}}{\partial z}-\frac{\partial}{\partial z} B_{0} \tilde{B} / 4 \pi+\frac{\partial}{\partial z} B / B / 4 \pi$

$$
\frac{\partial \tilde{B}_{z}}{\partial t}=\frac{B_{0} \partial t}{\partial z}-\frac{B_{0} \partial \sigma}{\partial z}
$$

Link pressure to density and use continuity equation + math:

$$
\frac{\partial^{2} \tilde{\rho}}{\partial t^{2}}=\underbrace{\frac{\gamma p_{0}}{\rho_{0}}}_{c_{s}^{2}} \frac{\partial^{2} \tilde{\rho}}{\partial z^{2}}
$$

The Magnetosonic wave (or compressionable Alfven wave)

Wave propagation perpendicular to the magnetic field and compressible
Assumption:
$\boldsymbol{k}=k \widehat{x}$
$\boldsymbol{\nabla} \cdot \boldsymbol{v} \neq 0$

The Magnetosonic wave (or compressionable Alfven wave)

Wave propagation perpendicular to the magnetic field and compressible
Assumption:

$$
\boldsymbol{k}=k \widehat{\boldsymbol{x}}
$$

$$
\nabla \cdot v \neq 0
$$

Linearized equations (and jumping a few steps):

$$
\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\frac{1}{\rho_{0}} \nabla\left(\tilde{p}+\frac{\tilde{B}^{2}}{8 \pi}\right)+\frac{\boldsymbol{B}_{\mathbf{0}}}{\rho_{0}} \cdot \frac{\nabla \widetilde{\boldsymbol{B}}}{4 \pi} \quad \frac{1}{\rho_{0}} \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t}=-\frac{\boldsymbol{B}_{\mathbf{0}}}{\rho_{0}} \cdot \nabla \widetilde{\boldsymbol{v}}
$$

The Magnetosonic wave (or compressionable Alfven wave)

Wave propagation perpendicular to the magnetic field and compressible
Assumption:

$$
\boldsymbol{k}=k \widehat{x}
$$

$$
\nabla \cdot v \neq 0
$$

Linearized equations (and jumping a few steps):

$$
\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\frac{1}{\rho_{0}} \nabla\left(\tilde{p}+\frac{\tilde{B}^{2}}{8 \pi}\right)+\frac{\boldsymbol{B}_{\mathbf{0}}}{\rho_{0}} \cdot \frac{\partial \widetilde{\boldsymbol{B}}}{4 \pi}
$$

$$
\frac{1}{\rho_{0}} \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t}=-\frac{\boldsymbol{B}_{0}}{\mathscr{\rho}_{0}} \cdot \nabla \widetilde{\boldsymbol{v}}
$$

The Magnetosonic wave (or compressionable Alfven wave)

Wave propagation perpendicular to the magnetic field and compressible
Assumption:

$$
\boldsymbol{k}=k \widehat{\boldsymbol{x}}
$$

$$
\nabla \cdot v \neq 0
$$

Linearized equations (and jumping a few steps):

$$
\begin{aligned}
\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\frac{1}{\rho_{0}} \nabla\left(\tilde{p}+\frac{\tilde{B}^{2}}{8 \pi}\right)+\frac{\boldsymbol{B}_{\mathbf{0}}}{\rho_{0}} \cdot \frac{\partial \widetilde{\boldsymbol{B}}}{4 \pi} & \frac{1}{\rho_{0}} \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t}=-\frac{\boldsymbol{B}_{\mathbf{0}}}{\rho_{0}} \cdot \nabla \widetilde{\boldsymbol{v}} \\
\frac{d \boldsymbol{B} / \rho}{d t}=0 & \widetilde{\boldsymbol{B}}=\frac{\boldsymbol{B}_{\mathbf{0}} \tilde{\rho}}{\rho_{0}}
\end{aligned}
$$

The Magnetosonic wave (or compressionable Alfven wave)

Wave propagation perpendicular to the magnetic field and compressible
Assumption:

$$
\boldsymbol{k}=k \widehat{\boldsymbol{x}}
$$

$$
\nabla \cdot v \neq 0
$$

Linearized equations (and jumping a few steps):

$$
\begin{array}{ll}
\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\frac{1}{\rho_{0}} \nabla\left(\tilde{p}+\frac{\tilde{B}^{2}}{8 \pi}\right)+\frac{\boldsymbol{B}_{\mathbf{0}}}{\rho_{0}} \frac{\partial \widetilde{\boldsymbol{B}}}{4 \pi} & \frac{1}{\rho_{0}} \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t}=-\frac{\boldsymbol{B}_{0}}{\rho_{0}} \cdot \nabla \widetilde{\boldsymbol{v}} \\
\frac{d \boldsymbol{B} / \rho}{d t}=0 \quad \widetilde{\boldsymbol{B}}=\frac{\boldsymbol{B}_{\mathbf{0}} \tilde{\rho}}{\rho_{0}} & \\
\quad \text { Thermal } \quad \text { Magnetic } \\
\frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\frac{1}{\rho_{0}} \nabla\left(\tilde{p}_{T}+\widetilde{p}_{B}\right) &
\end{array}
$$

The Magnetosonic wave (or compressionable Alfven wave)

Wave propagation perpendicular to the magnetic field and compressible

Assumption:

$$
\boldsymbol{k}=k \widehat{\boldsymbol{x}}
$$

$$
\nabla \cdot v \neq 0
$$

Linearized equations (and jumping a few steps):

$$
\begin{aligned}
& \frac{\partial \widetilde{\boldsymbol{v}}}{\partial t}=\frac{1}{\rho_{0}} \nabla\left(\tilde{p}+\frac{\widetilde{B}^{2}}{8 \pi}\right)+\frac{\boldsymbol{B}_{\mathbf{0}}}{\rho_{0}} \frac{\nabla \widetilde{\boldsymbol{B}}}{4 \pi} \\
& \frac{1}{\rho_{0}} \frac{\partial \widetilde{\boldsymbol{B}}}{\partial t}=-\frac{\boldsymbol{B}_{0}}{\rho_{0}} \cdot \nabla \widetilde{\boldsymbol{v}} \\
& \frac{d \boldsymbol{B} / \rho}{d t}=0 \\
& \widetilde{\boldsymbol{B}}=\frac{\boldsymbol{B}_{\mathbf{0}} \tilde{\rho}}{\rho_{0}} \\
& \text { Thermal } \\
& \text { Magnetic } \\
& \frac{\partial \widetilde{v}}{\partial t}=\frac{1}{\rho_{0}} \nabla\left(\tilde{p}_{T}+\tilde{p}_{B}\right) \\
& \left.\frac{\partial^{2} \tilde{\rho}}{\partial t^{2}}=\frac{c_{S}^{2}}{\left(\frac{\gamma p_{0}}{\rho_{0}}\right.}+\frac{\frac{v_{A}^{2}}{B_{0}^{2}}}{4 \pi \rho_{0}}\right) \frac{\partial^{2} \tilde{\rho}}{\partial z^{2}}
\end{aligned}
$$

Simple MHD waves : B-field is included

Parallel propagation

$\boldsymbol{k}=k \hat{\mathbf{z}}$
Magnetosonic

MHD waves a summary

MHD waves a summary

MHD waves a summary

MHD waves a summary

Summary of waves in plasmas

- Langmuir wave
- Electron and Ions are cold
- Electrons are not cold
- Use as a diagnostic
- Waves can exchanges energy with particles and vice-versa
- MHD waves
- Shear Alfven wave
- Acoustic Wave
- Magnetosonic Wave

