
�

�

�

�

Computational Methods in Plasma Physics

Richard Fitzpatrick

Institute for Fusion Studies

University of Texas at Austin



�

�

�

�

Purpose of Talk

• Describe use of numerical methods to solve simple problem in

plasma physics that, nevertheless, cannot be solved via standard

analytic methods.

1



�

�

�

�

Plasma Physics Problem

• Collisionless, unmagnetized, 1D (i.e., ∂/∂y = 0, ∂/∂z = 0) plasma

consisting of N electrons and N singly-charged ions.

• Ions much more massive than electrons, so on sufficiently short

time-scales can treat ions as static, uniform, neutralizing

background, and only consider motion of electrons.

• Initial state: Two counter-propagating warm electron beams.

• If beam speed significantly larger than thermal speed then system

unstable to two-stream instability (see Wikipedia page).

• At small perturbation amplitudes, two-stream instability can be

treated analytically. At large perturbation amplitudes, analytic

methods break down, necessitating numerical approach.

2



�

�

�

�

Electron Equations of Motion

• Let ri be x-coordinate of ith electron. Equations of motion of ith

electron are

dri

dt
= vi,

dvi

dt
= −

e

me
E(ri),

where e > 0 is magnitude of electron charge, me is electron mass,

and E(x) is x-component of electric field-strength at position x.

• N.B. 1D nature of problem implies that mode is longitudinal: i.e.,

k ∝ E. Longitudinal plasma modes do not self-generate magnetic

fields. Hence, absence of magnetic term in equations of motion.

3



�

�

�

�

Poisson’s Equation

• Electric field-strength expressed in terms of scalar potential,

E(x) = −
dφ

dx
.

• Poisson-Maxwell equation yields

d2φ

dx2
= −

e

ε0
[n0 − n(x)] ,

where ε0 is permittivity of free-space, n(x) is electron number

density [i.e., number of electrons in interval x to x+ dx is

n(x)dx], and n0 is uniform ion number density.

• Spatial average of n(x) equal to n0, since equal numbers of ions

and electrons.

4



�

�

�

�

Initial State

• Initial electron distribution function consists of two counter-

propagating Maxwellian beams of mean speed vb and thermal

spread vt: i.e.,

f(x, v) =
n0

2

[
1√
2π vt

e−(v−vb) 2/(2 v 2
t ) +

1√
2π vt

e−(v+vb) 2/(2 v 2
t )

]
.

• f(x, v)dxdv is probable number of electrons between x and

x+ dx with velocities in range v to v+ dv.

• Beam temperature, T , related to thermal spread via vt =
√
T/me,

where T measured in energy units.

5



�

�

�

�

Normalization

• First step in solving physics problem numerically is to normalize

governing equations: i.e., render all variables dimensionless, and as

many as possible O(1).

• Normalization reduces likelihood of arithmetic underflow and

overflow.

• Normalization facilities identification of terms in governing

equations that can be safely neglected (such terms having

magnitudes much less than unity).

6



�

�

�

�

Normalization Scheme

• All times expressed in units of ω−1
p , where

ωp =

√
n0 e 2

ε0me

is electron plasma frequency: i.e., typical frequency of electrostatic

electron oscillations.

• All lengths expressed in units of Debye length,

λD =
vt

ωp
:

i.e., typical length-scale above which electrons exhibit collective

(i.e., plasma-like) effects, instead of acting like individual particles.

7



�

�

�

�

Normalized Equations

• Normalized electron equations of motion:

dri

dt
= vi,

dvi

dt
= −E(ri),

E(x) = −
dφ

dx
,

d2φ

dx2
=

n(x)

n0
− 1.

• Normalized initial distribution function:

f(x, v) =
n0

2

[
1√
2π

e−(v−vb)
2/2 +

1√
2π

e−(v+vb)
2/2

]
.

8



�

�

�

�

Spatial Domain of Solution

• Equations solved in spatial domain

0 ≤ x ≤ L,

where L � 1: i.e., plasma many Debye lengths in extent.

• For sake of simplicity, adopt periodic boundary conditions: i.e.,

identify left and right boundaries of solution domain.

• Follows that n(0) = n(L), E(0) = E(L), φ(0) = φ(L) at all times.

• Electrons that cross right boundary of solution domain must

reappear at left boundary with same velocity, and vice versa.

9



�

�

�

�

Spatial Discretization

• Define set of J equally-spaced spatial grid points located at

coordinates

xj = j δx,

for j = 0 to J− 1, where δx = L/J.

• Let

nj = n(xj),

φj = φ(xj),

et cetera.

10



�

�

�

�

Evaluation of Electron Number Density - I

• Electron number density at grid points calculated from electron

coordinates via particle-in-cell (PIC) approach.

• Suppose ith electron lies between jth and (j+ 1)th grid points:

i.e., xj < ri < xj+1. Let

nj → nj +

(
xj+1 − ri

xj+1 − xj

)/
δx,

nj+1 → nj+1 +

(
ri − xj

xj+1 − xj

)/
δx.

Thus, nj δx increases by 1 if electron at jth grid point, nj+1 δx

increases by 1 if electron at (j+ 1)th grid point, nj δx and

nj+1 δx both increase by 1/2 if electron halfway between grid

points, et cetera.

11



�

�

�

�

Evaluation of Electron Number Density - II

• Performing analogous assignment for each electron, in turn, allows

the nj to be determined from the ri (assuming that all the nj

initialized to zero at start of process).

• Clear that ∫L
0

n(x)dx �
∑

j=0,J−1

nj δx = N,

as must be the case if the system contains N electrons.

• Relative error in calculation of the nj from the ri is O(1/J 2).

12



�

�

�

�

Fourier Solution of Poisson’s Equation - I

• Poisson’s equation (n.b., n0 = N/L in normalized units):

d2φ

dx2
= ρ(x),

ρ(x) = n(x)/n0 − 1.

• Let

φj =
∑

j ′=0,J−1

φ̄j ′ e
i j j ′ 2π/J,

ρj =
∑

j ′=0,J−1

ρ̄j ′ e
i j j ′ 2π/J,

for j = 0 to J− 1, which automatically satisfies periodic boundary

conditions φJ = φ0 and ρJ = ρ0.

13



�

�

�

�

Fourier Solution of Poisson’s Equation - II

• ρ̄0 =
∫L
0
ρ(x)dx/L = 0, because

∫L
0
n(x)dx/L = n0.

• Remaining ρj obtained via standard Fourier inversion theorem:

ρ̄j = J−1
∑

j ′=0,J−1

ρj ′ e
−i j j ′ 2π/J.

• Fourier inversion of Poisson’s equation yields: φ̄0 = 0, and

φ̄j = −ρ̄j/
[
j 2 (2π/L) 2

]
for j = 1 to J/2.

• Also,

φ̄j = φ̄ ∗
J−j

for j = J/2+ 1 to J− 1, which ensures that φj are real.

14



�

�

�

�

Calculation of Ej

• Electric field at grid points:

Ej =
φj−1 − φj+1

2 δx
,

for j = 0 to J− 1.

• N.B. j = 0 and j = J− 1 are special cases that are resolved using

periodic boundary conditions.

• Relative error in above first-order discretization scheme is

O(1/J 2).

15



�

�

�

�

Calculation of E(ri)

• Suppose that ri lies between jth and (j+ 1)th grid points: i.e.,

xj < ri < xj+1.

• Linear interpolation:

E(ri) =

(
xj+1 − ri

xj+1 − xj

)
Ej +

(
ri − xj

xj+1 − xj

)
Ej+1.

• Relative error in interpolation scheme is O(1/J 2).

16



�

�

�

�

Fast Fourier Transform

• Discrete Fourier transform (DFT) is computationally expensive

because of large number of trigonometric function evaluations.

• DFT typically require O(J 2) arithmetic operations.

• Fast Fourier transform (FFT) algorithm (see Wikipedia page)

rapidly computes DFT via factorization.

• FFT only requires O(J ln J) arithmetic operations.

• Since J = 1000 in program, use of FFT algorithm implies

reduction in arithmetic operations per time-step by factor of 100.

• Program implements FFT algorithm via calls to fftw library.a

ahttp://www.fftw.org

17



�

�

�

�

Euler Method

• Suppose that function y(t) satisfies first-order ordinary differential

equation (ODE)
dy

dt
= f[y(t)].

• Equation can be solved numerically via repeated use of Euler

method (see Wikipedia page):

y(t+ h) = y(t) + h f[y(t)] +O(h 2).

• Truncation error per time-step is O(h 2), necessitating relatively

small time-steps to keep overall truncation error to acceptable

levels.

• Generalization to system of N coupled first-order ODEs

straightforward.

18



�

�

�

�

Fourth-Order Runge-Kutta Method

• Fourth-order Runge-Kutta (RK4) method (see Wikipedia page):

k1 = h f[y(t)],

k2 = h f[y(t) + k1/2],

k3 = h f[y(t) + k2/2],

k4 = h f[y(t) + k3],

y(t+ h) = y(t) + k1/6+ k2/3+ k3/3+ k4/6+O(h 5).

• Algorithm requires approximately 3 times number of arithmetic

operations per time-step as Euler method. However, truncation

error per time-step much smaller [O(h 5) rather than O(h 2)].

• Can take much larger time-steps using RK4 method. More than

makes up for factor of 3 increase in operations per time-step.

19



�

�

�

�

Program Pic

• Program Pica is PIC code (which implements previously described

calculation) written in C++ language.

• Program uses RK4 algorithm to integrate electron equations of

motion. At each time-step, Poisson’s equation solved via calls to

fftw library.

• Default program parameters: N = 20, 000, L = 100, vb = 3,

J = 1000, h = 0.1.

ahttp://farside.ph.utexas.edu/teaching/plasma/plasma.html

20



�

�

�

�

Initial State: t = 0

21



�

�

�

�

Final State: t = 50

22



�

�

�

�

Visualization

• Phase-space motion of electrons visualized as follows:

– Program writes electron phase-space coordinates to file at each

time-step (with separate file for each time-step).

– Pythona script reads coordinate files and employs

Matplotlibb package to produce separate png plot of

electron phase-space positions at each time-step.

– Finally, Python script calls ImageMagickc image processing

application to combine separate png plots into animated gif.

(Animated gifs can be viewed by all modern web-browsers.)

ahttp://www.python.org
bhttp://matplotlib.org
chttp://www.imagemagick.org

23



�

�

�

�

Energy Conservation

• Only force in problem (self-generated electric field) is conservative.

So, total system energy should be constant of motion.

• (Normalized) total system energy:

E = K+U,

where

K =
∑

i=1,N

v 2
i /2

is kinetic energy of electrons, and energy stored in electric field is

U =
n0

2

∫L
0

E 2(x)dx = −
1

2

∫L
0

n(x)φ(x)dx = −
∑

i=1,N

φ(ri)/2.

24



�

�

�

�

Test of Energy Conservation

Blue curve is E/N. Red curve is K/N.

25



�

�

�

�

Entropy Conservation

• Motion of electrons in self-generated electric field should be

reversible in time: i.e., if we take final state, reverse velocities of

all electrons, and evolve system forward in time by same amount,

then should recover initial state (with reversed velocities).

• Equivalent to saying total entropy of system is constant of motion.

26



�

�

�

�

Initial State: t = 0

27



�

�

�

�

Final State: t = 50

28



�

�

�

�

Using PIC Code to Simulate Real Plasma

• Real plasmas typically consist of NA ∼ 10 24 electrons. This is far

greater number than could ever be accommodated in PIC code.

• Particle motion in PIC code only depends on charge-to-mass ratio.

Could identify particles in PIC code as super-particles consisting of

correlated clumps of real particles.

• Alternatively, could identify particles in PIC code as markers used

to reconstruct electron distribution function, f(x, v, t), at each

time-step, in much same manner as electron number density,

n(x), reconstructed from electron coordinates in code. Hence,

PIC code effectively evolving Vlasov equation:

∂f

∂t
+ v

∂f

∂x
−

e E(x)

me

∂f

∂v
= 0.

29



�

�

�

�

Statistical Noise in PIC Codes

• PIC codes suffer from statistical noise. If phase-space binned into

regions of ‘volume’ dxdv then distribution function in given bin

has irreducible statistical variation of relative magnitude 1/
√
Nbin,

where Nbin is typical number of electrons in each bin.

• In 1D (1 space dimension, 1 velocity dimension), with 100× 100

bins in phase-space, keeping statistical noise below 1% requires

100× 100× 100 2 = 10 8 electrons.

• In 2D, (2 space dimensions, 2 velocity dimensions), with

100 2 × 100 2 bins in phase-space, keeping statistical noise below

1% requires 100 2 × 100 2 × 100 2 = 10 12 electrons.

• In 3D, (3 space dimensions, 3 velocity dimensions), with

100 3 × 100 3 bins in phase-space, keeping statistical noise below

1% requires 100 3 × 100 3 × 100 2 = 10 16 electrons!

30



�

�

�

�

Continuum Codes

• Alternative to PIC approach is to solve Vlasov equation,

∂f

∂t
+ v

∂f

∂x
−

e E(x)

me

∂f

∂v
= 0,

directly, using analogous methods to those typically used to solve

fluid codes.

• Main advantage of so-called continuum codes is absence of

statistical noise. Disadvantage is that numerical algorithms used

in continuum codes more complicated that those used in PIC

codes. Also, continuum codes harder to parallelize that PIC codes.

31



�

�

�

�

Scientific Computation Resources

• Scientific computation course: http://farside.ph.utexas.edu.

• Gnu Scientific Library (GSL).a Free (!) C library of numerical

routines for scientific computation. Includes special functions,

linear algebra, eigensystems, adapative integration of odes, etc.

• Matplotlib.b Free python 2D plotting library.

• Maxima.c Free computer algebra system.

• Petsc.d Free suite of data structures and routines for scalable

(parallel) solution of partial differential equations.

ahttp://www.gnu.org/software/gsl
bhttp://matplotlib.org
chttp://maxima.sourceforge.net
dhttp://www.mcs.anl.gov/petsc

32


