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• Wide  angle image of Dα emission 
showing edge localized mode (ELM) 
eruption on MAST. 

• While progress on ELMs research has 
been made, there remains open 
questions 

– Dynamics of the edge until ELMs 

– Physics of the ELM onset? 

• Pave the way for edge plasma control

Transient phenomena such as edge localized modes are 
predicted to cause deleterious effects to the walls of ITER

MAST tokamaks

Solar flare
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What is Our Current Understanding of the Pedestal 
Evolution Between ELMs?

• EPED1 is a pedestal model with predicts pedestal pressure height and width 
– based on two key limiting instabilities 

–  non-local peeling–ballooning (P–B)mode ➙ trigger for edge-localized mode (ELM)  

– nearly local kinetic ballooning modes (KBMs) ➙ regulate transport between ELMs 

• Broadband density fluctuations were observed during ELM recovery   
• JRT results showed that the pedestal evolves on the KBM stability line at low current

Type I ELM cycle cartoon Groebner, Nucl Fusion 2013

Connor, PoP (1998); Wilson, PoP (2002); 
Snyder,  PoP (2001); Snyder, NF (2011)

Yan, PoP (2011)
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What is Our Current Understanding of the Pedestal Evolution Between 
ELMs?
• EPED1 is a pedestal model with predicts pedestal pressure height and width 

– based on two key limiting instabilities 
–    

– nearly local kinetic ballooning modes (KBMs) ➙ regulate transport between ELMs 

• Broadband density fluctuations were observed after an ELM   
• JRT results showed that the pedestal evolves on the KBM stability line at low current

Groebner, Nucl Fusion 2013

Connor, PoP (1998); Wilson, PoP (2002); 
Snyder,  PoP (2001); Snyder, NF (2011)

Yan, PoP (2011)

• Can we characterize the edge instability during 
the early recovery of the pedestal? 

• Does edge instability limit pedestal evolution?

Type I ELM cycle cartoon
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The Burst Thomson Scattering (TS) Provides the Means to Probe the Inter-ELM Dynamic of the 
Pedestal

• Normal BT =1.9 T with q95 = 3 in Type I ELMy H-mode 
• The laser was fired in burst mode to increase the temporal resolution

Ip =1.6 MA

Time [ms]

Laser pulses

ELM onset

Divertor mag.

Dα
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Simultaneously resolve the local electron density & temperature to probe various  
transient phenomena in plasmas

• Langmuir probes allow routine measurements of electron density & 
temperature in low temperature plasmas. 

- These probes can be perturbative to the local plasma but provide good 
temporal resolution. 

• High temperature plasma are routinely probed using laser scattering (e.g. 
Thomson scattering) for non-perturbative local measurements. 

- This approach lacks good temporal resolution.

ECE and reflectometry provide density and temperature but ECE is not available in ST



DIII-D: Inter-ELM Magnetic Fluctuations Also Exhibit QCFs 
Preceding the Onset of ELMs

• Outboard mid plane magnetic probe shows drop 
in fluctuations after an ELM  

• Followed by a quiet period during which the 
density gradient recovers quickly 

• Subsequently an onset and evolution of quasi-
coherent fluctuations 

– similar to the washboard modes on JET

Perez, PPCF 2004

Magnetic fluctuations spectrogram

Core modes & broadband
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Pedestal Top Temperature (from ECE) Evolution is Correlated With Magnetic Fluctuation 
Amplitudes on C-Mod

• Pedestal temperature and QCF track each other

B  magnetic probe~
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Thomson scattering: what’s it all about?

Scattering volume
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Another view: Vector form

Observer sees a frequency 
shift in the laser frequency 
due to the radiation scattered 
of the moving electron 

Laser beam (high 
power needed)

î
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Width of the scattered spectrum is related to the plasma temperature 

   and the integrated intensity is proportional to the electron density

Thomson Scattering
INPUT OUTPUT

Laser wavelength 
(monochromatic)

 Scattered spectrum 
(spectral distribution)

λ

Intensity Intensity

width
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• Thomson scattering is a robust and accurate diagnostic for local 
density & temperature measurements. 

• Limitations: 
– Temporal resolution has been limited to tens of Hz @ Joule level energies. 

– Increase of this repetition rate is usually achieved by interleaving multiple lasers. 

‣ Difficult to scale in order to achieve kHz rep rate. 

• In low and high temperature plasmas, transient physics require kHz 
rep rate lasers.

Thomson scattering is central to many analyses in fusion 
devices
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• Two approaches to achieve fast temporal resolution @ Joule level 
energies. 

- Thin disk 

Immune to thermal lensing and capable of 1 kHz - ongoing work  

- Flashlamp (this talk)  

Limited to fast burst but capable to achieve tens of kHz. 

• Characterization of the pulse burst laser system. 

• Benefits of synergy between TS and modern x-ray-based impurity 
measurements.

Outline
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• PBLS has been pioneered at Madison Symmetric Torus (MST). 

• On NSTX-U, we plan to         extend the pulse duration and, (B)  add a baseline mode to 
increase the regular (60 Hz) TS temporal resolution. 

- PBLS will enhance the existing TS system

14

Fast Thomson scattering measurements can be achieved using a 
pulse burst laser system (PBLS)

D J Den Hartog, J R Ambuel, M T Borchardt, J A Reusch, P E Robl, and Y M Yang 
Journal of Physics: Conference Series 227 (2010) 012023

A B

Picture of the laser head

Amplifiers

Oscillator heads

Alignment HeNe

1.3 m length

to NSTX-U
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• Pulse energy ➾ 1.5 J per pulse. 
- Pulse width ➾ 10 ns (FWHM). 

- Beam diameter ➾ 10 mm @ 0.5 mrad. 

• Three modes of operation. 
- Base mode @ 30 Hz to be compatible with the current NSTX-U rep rate. 

- Slow burst mode: 1 kHz rep rate for 50 ms. 

- Fast burst mode: 10 kHz rep rate for 5 ms. 

• Take advantage of Nd:YAG larger rod diameter (9 & 12 mm) for 
thermal inertia.

Pulse burst laser - Design parameters

Limited by thermal lensing}
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Three of  modes of operation have been implemented

30 Hz

1 kHz for 50 ms

10 kHz for 5 ms

Flashlamp

Q-switch
Baseline

Slow burst

Fast burst
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• Single and double hump pulses. 

• Minimal impact of the NSTX-U TS 
analysis.

Two types of pulse shape have been observed at the  
exit of the oscillator
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Laser head can in principle produce  
a stable single-hump pulse  

by optimizing the oscillator output coupler reflectivity 
(subject of future upgrade)
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Double hump pulse exhibits a better pulse-to-pulse energy 
reproducibility
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Energy levels needed for the base and slow burst modes were 
achieved
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Similar reproducibility are obtained for two fast bursts scenarios: 
10 kHz & 20 kHz
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Base mode exhibits good beam profile and far field stability 
(Imaging a reticle at 8.5 m)
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Key  beam profile parameters 
 using fast framing camera
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Beam parameters in far field field for base mode are similar to commercially  
available laser properties

Beam Parameters @ 8.5 m  − 30 Hz
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Slow burst mode exhibits an elongated beam profile  
in the far field
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Beam parameters in far field field for the slow burst exhibits some slight 
focussing
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Fast burst mode was successfully achieved with good far-field 
beam properties

[mm]

[m
m]

Frame = 05 rep rate = 10 kHz

−10 0 10

−10

0

10

[mm]
[m

m]

Frame = 24 rep rate = 10 kHz

−10 0 10

−10

0

10

[mm]

[m
m]

Frame = 28 rep rate = 10 kHz

−10 0 10

−10

0

10

[mm]

[m
m]

Frame = 29 rep rate = 10 kHz

−10 0 10

−10

0

10

= 0.6
θ[deg.] = 87.3

= 0.7
θ[deg.] = 86.3

= 0.7
θ[deg.] = 86.4

= 0.7
θ[deg.] = 86.5

Fast burst was successfully extended to 20 kHz & 27 kHz



NUF/SULI A. Diallo -  July 2016 25

Fast burst mode was successfully achieved with good far-field 
beam properties

[mm]

[m
m]

Frame = 05 rep rate = 10 kHz

−10 0 10

−10

0

10

[mm]
[m

m]

Frame = 24 rep rate = 10 kHz

−10 0 10

−10

0

10

[mm]

[m
m]

Frame = 28 rep rate = 10 kHz

−10 0 10

−10

0

10

[mm]

[m
m]

Frame = 29 rep rate = 10 kHz

−10 0 10

−10

0

10

= 0.6
θ[deg.] = 87.3

= 0.7
θ[deg.] = 86.3

= 0.7
θ[deg.] = 86.4

= 0.7
θ[deg.] = 86.5

Fast burst was successfully extended to 20 kHz & 27 kHz



NUF/SULI A. Diallo -  July 2016 26

Summary of beam parameters in far field field for fast burst  

Beam Parameters @ 8.5 m  − 10 kHz
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• Good progress in the R&D of the fast laser system for NSTX-U. 
- Good pulse-to-pulse variability at 1.5J/pulse & good beam characteristics in the far field. 

- Capable of operating at up to 27 kHz in burst mode - Ready for next NSTX-U campaign! 

• This laser system will offer new time resolved measurements capabilities: 
‣ Fast transients in fusion devices 

– ELM onset physics ( ≲ 1ms ). 
– MHD, e.g., kink and tearing modes (~ sub ms). 
– Disruption physics (~ sub ms). 
– L-H, L-I-H,  transitions (≲ 1 ms) 
– Probe the electron distribution induced by RF.  
– Fast ion physics, e.g., density and temperature displacements induced by TAE modes in ST. 
– Edge turbulence (few kHz). 

‣ Can be extended to low temperature plasma to resolve  
- Spokes in Hall thrusters. 
- Magnetic reconnection experiments.

Fast burst laser system will enable study of  
a wide range of transient physics 
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