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Plasma equilibrium with rational magnetic surfaces

Allen H. Boozer

Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544

(Received 5 February 1981; accepted 14 August 1981)

The self-consistent classical plasma equilibrium with diffusion is studied in a toroidal geometry having a
sheared magnetic field. Near each rational surface it is found that the pressure gradient is zero unless the
Fourier component of 1/B?, which resonates with that surface, vanishes. Despite the resonances, the overall
plasma confinement is, in practice, only slightly modified by the rational surfaces.

. INTRODUCTION

Magnetic surfaces on which the rotational transform x
is a rational number have long been known to be associ-
ated with singularities in the plasma equilibrium.

Clear discussions of this problem have been given by
Grad' and Solov’ev and Shafranov.? On surfaces with
irrational x, the magnetic field lines ergodically cover
the entire surface and the pressure is constant on the
surface. On rational surfaces, the magnetic field lines
close on themselves. The condition for plasma equilib-
rium with closed field lines is that the integral ¢ dI/B
be constant on a pressure surface. In systems in which
x depends on radius, the pressure surfaces defined by
the irrational surfaces do not have- $dl/B constant on
rational surfaces except for special cases such as tor-
oidal symmetry.

In this paper we will examine the problem of self-
consistent plasma equilibrium in a toroidal system with
shear. We find that the plasma equilibrium is con-
trolled by the Fourier transform of 1/B? in the appro-
priate toroidal and poloidal angles ¢ and 6. Let 3,,
be proportional to the nth toroidal harmonic and the mth
poloidal harmonic of 1/B%; then, near a rational sur-
face x(¥,)=n/m

. 8, dP

(ju)p (W—-v,) dv cos (ng — m9),
15,, 12 dP

TGy av’

b dP .
w—_‘i—'jg ap Sin (g —m9),

[ X <I>o(¢) < M (_
with (j,)p the pressure driven part of the parallel cur-
rent, P the pressure, I the total flux of particles
crossing a surface, 7, the parallel resistivity, and &

- &,(%) the variation of the electrostatic potential in

the surface. The smoothness of the particle flux im-
plies dP/dy o« 15, |*( — ¥,)? near a rational surface.
Unless [5,, | vanishes, which is equivalent to ¢ di/B
being constant on the rational surface, dP/dyo (y

- ¥,)%. Assuming 5,,]#0, we then find (j,)p = (3 - 3,),
that is, it vanishes at § = ¥,, while the potential varia-
tion remains finite. Since (j,) vanishes everywhere as
the plasma pressure goes to zero, any vacuum field
configuration with magnetic surfaces and shear gives a
plasma equilibrium at low enough plasma pressure.
The discussion of toroidal equilibrium by Solov’ev and
Shafranov? dismissed the possibility that dP/d¥ might
be zero at resonant rational surfaces as unphysical.
Ohkawa® found a resonant enhancement of the diffusion
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coefficient in the presence of helical perturbations, but
the general problem of toroidal confinement was not
considered,

Other papers which are related to the work reported
here are by Kruskal and Kulsrud,! Hamada,® Greene and
Johnson,® and Grad.’

In Sec. II of the paper the appropriate coordinate sys-
tem will be established, in Sec. III the equation for the
parallel plasma current is derived and solved, in Sec.
IV the consequences of Ohm’s law are explored, and the
conclusions are given in Sec. V.

1l. MAGNETIC COORDINATES

Solenoidal vectors such as the magnetic field can al-
ways be written in the so-called Clebsch representation

B=V§X%XVo, (1)

with a field line defined by constant { and 6,. Since we

are assuming a scalar pressure with
VP =(1/¢c)jXB, @)

the Clebsch coordinate y can be chosen as a function of
P alone. The systems we are considering have topo-
logically toroidal pressure surfaces so the function
$(P) can be chosen with 27 equal to the magnetic flux
inside a pressure surface (i.e., the toroidal flux).
This choice of ¢ makes 8, an angle-like variable.

In addition to the Clebsch or contravariant represen-
tation, a magnetic field with a scalar pressure can be
written in the covariant form?

B=Vy+pVY (3)

with ¢, 6y, x as coordinates. - An important role is
played by the arbitrariness in the ¥, 6,, x, B represen-
tation of B. Since ¢ is defined, this arbitrariness oc-
curs only in 6y, X, and B. It is easy to show that if 8,
X, and 8 represent B, then ,, X, and 8 give a repre-
sentation if, and only if,

Fo=0p+ 0x(d), x=x+xul0), E=B—%;’-. 4)

The functions 8x and x, are arbitrary functions of 2.

Although many fundamental properties of the plasma
equations are easily illustrated using 8, and x as coor-
dinates, they do obscure the toroidal and the poloidal
periodicities of the torus. Angular coordinates 8 and
¢ linearly related to 6, and x make this periodicity
manifest. Suppose we circuit the torus once toroidally
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and come back to the same physical point. In general,
x and 8, will not return to their original values x(0) and
60(0). Rather after a toroidal circuit

x=x(0)+2mg, 6,=06,(0)- 27x. (5)

Both (x(0), 8,(0)) and (x, 8;) are representations of the
field at the same physical location so g and x must be
functions of ¢ alone. In one poloidal circuit

x=x(0)+27l, 84=20,(0)+ 270, (6)
Again, I and 0 must be functions of ¥ alone. The func-
tion o will be shown to equal the number one. The per-

iodicities can be simply given by defining the poloidal
angle 6 and the toroidal angle ¢ so that

y=00-x¢, (M
X=go+1I0. (8)
The coordinates of the paper will be ¢, 6, ¢.

To show that 0 is unity, remember that 27y equals
the magnetic flux inside a pressure surface or

2mp=fB-ds,. ©)
The element of surface area in 3, 8, ¢ coordinates is
v
= = 9 - 1
as, v¢-(v¢xv9)d ¥ (10)

Using Eqs. (1), (7), and (8), B=0V} XVO +xVoX VY,
which implies

4= [ oav. (1)

In ¢, 6, ¢ coordinates the contravariant form of the mag-
magnetic field is then
B=VYyxXVe+x(d)Ve XV, (12)

while the covariant form is

B=gIve +1pvo+6,9y, 8,=8+(20+20).

(13)
The total toroidal current inside a flux surface is
VoxX VY
= G ——1
f’ dS, = f Bedl, = f Ve Vo (vexve)
(14)

The total poloidal current outside a flux surface can
similarly be shown to be cg()/2.

i1l. THE CURRENT DENSITY
The covariant representation of B, Eq. (13), gives a
simple expression for the current density

c =< 8 _ %8
=~ VXB=,- <(v¢xv¢)a¢ (vwxve)ag). (15)

=4
The cross product of this expression with the contra-
variant representation of B, Eq. (12), gives an equation
for B

+x@)v¢ . (8

vP—lij~—v¢ (vwxve)( 28
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The inverse of the ¥, 6, ¢ Jacobian can be found by dot-
ting together the covariant, Eq. (13), and contravariant,
Eq. (12), representations of B

2

v¢-(vwxv9)=g+x1. (17)
The equation for 8 is then

aB aB 411 dP

- g+xl)—.

50 %36 g+l (18)

The parallel component of j can be found by dotting the
covariant expression for B, Eq. (13), into j, Eq. (15),
to obtain

47 gy _ 1__(55 28
c B g+xi\l3¢ %% ) (19)

Let us now solve the equations for 8 and j,/B. The
function B need not be periodic in 6 and ¢; however, j,/
B must be. One finds a homogeneous solution for B

By=ux(@)xp—96), (20)

with p, an arbitrary function of ¥. To this solution the
inhomogeneous solution to Eq. (18) must be added. To
find the inhomogeneous solution let

1 1 ’
=5 (1 + Z B, cOS(NPp — m8 + Anm)>5 1)
1] nm

with the prime on the sum implying that the term n =0,
m =0 is eliminated. That is, we assume that the field
strength is each magnetic surface is known and that it
can be appropriately expanded in a Fourier series.
Then, one finds

B=u,¥)xd - 9)+ig(g+x1)£¢+ﬁu (22)
B dy

with g,, which we will presently show is the g, of Eq.
(13), equal to

41r dap gt
R ;; e Sy sinlng - mO + ). (23)

The equations are simpler if the force-free current
part of 3 is singled out by defining

then
B= (W)= 0)+ 51 T (g8 +10) 44, (25)

The parallel current is given by Eq. (19)

ﬂh:p(¢)+4" dPZ n1+;:';lgﬁmcos(n¢ MmO+ Apm) -

¢ B n
(26)

The first term on the right side of this equation repre-
sents the force-free current and the second term the
Pfirsch~Schliiter current. The poloidal and toroidal
currents can be evaluated using Eqs. (15) and (25),

dr 47 dP

ay P (Bo7 dzﬁ)” : al
dg 4n dp

ay~ T (Bo dw)"' (28)
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Consequently, 8 of Eq. (25) can be rewritten as

dg
dy d'l’
which identifies the B« of Eq. (23) with that of Eq. (13).

p=-% 4 gy, (29)

It is of interest to note that in force-free magnetic
fields the plasma is minimum average B stable if B,
increases away from the magnetic axis by the V** cri-
terion of Johnson and Greene.? It can be easily shown
that B is the volume average of B? on a flux surface.
Consequently, V** and minimum average B stability
are the same,.

IV. CONSEQUENCES OF OHM'S LAW
The Ohm’s law of magnetohydrodynamics,
E+(l/clvxB=n"j, (30)

allows us to evaluate a plasma diffusion coefficient. A
potential part of the electric field can be separated.
Let

E=-Vg + €, (31)

The perpendicular part of € can be written in terms of
a velocity u

1
€, +-uxB=0. (32)

The velocity u represents an overall pinching of the
field and the plasma. Ohm’s law can be rewritten as

Ve +€,+(1/c)Hv-u)xB=n-j. (33)
The parallel component of this equation gives
% 73 €n_ . Ju
—=(g+
56 30 (g xl)(B - ) (34)

This equation with the expression for j,/B, Eq. (26),
implies the choice

“ nll H(ZP)B (35)
45‘—‘{)0(1/))—77" +x1)dp 2 n +;:ln)
X sin(ng — mb +>«,,m), » (36)

with ¢, an arbitrary function of .

To understand the velocity u we will consider Fara-
day’s law
B
¥=-CVXE=Vx(uXB)—CVX €. (37)
Evaluating uxB using the contravariant expression for
B, Eq. (12), one finds

azlb(x) t) . _ (nucz
— +uevy =~ 4 u)l, (38)
9 ,(x, t) MuC

st WV ( 4 )g’ (39)

with d,/dp =x. One can easily show that 273, is the
poloidal flux within an additive function of time. One
can define the plasma loop voltage V(p,t) by
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aw(l fe’fo) {40)

in the usual approximations of a tokamak V=~27RE,.
Evaluating Eq. (40) using Eq. (85) for ¢,, one finds

|4
== 41
H=c (g +xDn, (41)
This equation plus Egs. (38) and (39) imply
(1,0 _c av
at 2w Ay’ (42)

In steady state, one must clearly have the loop voltage
a constant V. One then has

c 1
v vZp*—21rg+x1 Vos (43)
and the total flux of particles due to u with p(y) the
density is
pl
T,= f pu'dsz—ZTrCEzVo. (44)
0

This is the classical pinch effect.

The particle diffusive flux can be evaluated using
Ohm’s law, Eq. (33). This equation can be solved for
the perpendicular part of v ~u and hence (v -u)°vy.
One finds, using Eq. (36),

c (Ia_q,_ 33
g+x\'3¢ 820

2 ! [l 2
=— };; %Z( +mg>6,mcos(n¢—m9+xm)

A\ n-xm

VP,

(v-u) vy = ~met 2 VY

2 dP 1vy |2

a0 B (45)

The total diffusive particle flux crossing a magnetic
surface is

—_— .——-————vw
r"_fp(v_u) Vo (VY XVH)

df d¢

do do

—(g+xI)pf(v u) v —— (46)

The expression for the total diffusive flux can be re-
written as

—_(Du +DJ.) dd) b ) (47)
with
cHg+x) nl+m
D, =2n*y, J}o Z;‘ ( - ”f’) 8., (48)

vy

oot [P, - .
Do=mct [ reas,, @S, =g resava) i dt; (49)

that is, dS; is the area element of a flux surface.

Let us assume that the plasma is in a steady state.
Then, particle conservation implies

Venv=s, (50)

with s the source of particles per unit volume. The
total flux of particles I'=T, + I, obeys
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ar _ dede

" ) °Ve-(vuxve) =5, (51)

with S() dy the number of particles added between two
differentially separated flux surfaces. Clearly, T
must be a smoothly varying function of ¥.

V. DISCUSSION

In steady-state the total flux of particles across a
magnetie surface is

Fn—D(w)—¢+ I, (52)
with D($) =D, + D, given by Eqs. (48) and (49) and T,
given by Eq. (44). The parallel current driven diffusion
coefficient D, is singular at each rational surface; that
is, near a rational surface

Dy [8,, 2/ (= $pm)], (53)

with ¢,,, the value of y when n=xm. The total particle

flux I'($) must be slowly varying in ¢ so we find near a

rational surface
dP (= bpp)?
—_CC .
dy b ’

nm

(54)

consequently, unless 13,,1=0, at ¥ =y,,, dP/dy van-
ishes at rational surfaces. The Pfirsch-Schliiter or
pressure driven part of the parallel current near a ra-
tional surface [see Eq. (26)] is

W— Ecos(nd) mb) o (P — ZIJ,,,,,) (55)
Consequently, the Pfirsch—Schliiter part of j, vanishes
at each rational surface rather than being singular and
the pressure driven part of j, goes to zero everywhere
as the plasma pressure goes to zero. The electrostatic
potential, interestingly, retains a finite variation on
rational magnetic surfaces even though dP/dy is zero
on these surfaces,

(jll)P

The singularity of D{Jy) at each rational surface is not
as important as it might first appear. Consider a re-
gion of the plasma with no sources so dI/dp=0. De-
fine a smoothing function A(y) such that A(p) goes to
zero for {¥! small but finite and which has a unit inte-
gral over ¥. Then let

Pw= [ aW-pPudn, (56)

dP__ rda B dP

G5 [ g Pwoan=+ fa Rl

L al-1y)
Defining
1 A=)

ow-J "oy v (58)

one has
_, .dP
T'= —-D(zp)Ep— . (59)

No matter how narrow the region over which A is dif-
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ferent from zero, as long as the region is finite, the
function D(¢) is finite everywhere. This follows from
the fact that the Fourier transform of a smooth func-
tion vanishes exponentially for high n or m; hence,
high-order rational surfaces have an exponentially small
effect on the integral leading to D.

An interesting application of the expression for D, is
to derive the well-known Pfirsch—Schliiter diffusion co-
efficient for a stellarator. This is done by assuming
that the field sirength has the obvious form

1/B ~(1/B})[1 - 2¢ cos 8 — 28 cos(Np - 10)]. (60)

The only terms in §,, are 8y =2€ and 0y, =208. We as-
sume that the plasma has negligible net toroidal cur-
rent, =0, and the toroidal field dominates so g=RB,,.
The diffusion coefficient one is used to seeing, D,T, is
D) divided by the area of the magnetic surface
(277)(27R) and is also divided by di/dr =rB,, since the
usual D multiplies dP/dr rather than dP/d¥. Equation
(48) implies, with € =7/R,

*_2 T?“Cz ! 6_35_2( x ?
bi=2 B So\2e ) \x-tw/m)]

The resonance =0, m =1, with §y; =2¢€ gives a con-
tribution

(61)

* 2 1n¢
D01—;{TBT (62)

the Pfirsch-Schliter coefficient. The resonance at n

=N, m=1, 0y, =208 gives

p* 2 mc (E o x )2
N1 ‘x2 BO € x - N/l .
Customary stellarator designs have 6~ € but N/I>x so

the Pfirsch—Schliiter coefficient gives an accurate ap-
proximation, Dy > Dy,.

(63)

The relationship between the magnetic coordinates of
this paper and other toroidal magnetic coordinates is of
interest. Let ¢,,6,, ¢, be any set of toroidal magnetic
coordinates. By magnetic coordinates we mean that

Bovwmzo, B'V(Gm—x¢m)=0. (64)

Naturally, 4, and ¢, must preserve the periodicities of
the torus. The general expressions for the alternative
magnetic coordinates are ¥, a function of § alone,

8,=0+xp(¥,0,0), ¢,=0+p@,0,9¢), (65)

with p periodic in 8 and ¢ but otherwise an arbitrary
function. A major characteristic of a coordinate sys-
tem is its Jacobian J. Now

1 dp ( 3, _3) B?
—= . = 1+ 66
= (V% 90,) 6, =G (1 + 50+ x G (66)
There is clearly considerable freedom in the choice of
the Jacobian.

The best known set of magnetic coordinates is the
Hamada set,’® which will be denoted by a subseript H.
In these coordinates the Jacobian is a constant or more
generally a function of ¥, alone. For Hamada coordi-
nates
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Pu, L dbgid |
2 T¥90 ~Taln) dbm (67)

If py is to be periodic, ¥5(¥) must be chosen so that
ddy 1 g+xl

day ~Jg B (68)
then,
Pu = ZI sm(n¢> mb+2,,), (69)

o n=xm

using Eq. (21) for 1/B%. Hamada coordinates make the

current lines straight as well as the field lines, Equa-
tions (23) and (69) imply
B, —(g+x1)4ﬂ—'2 (70)

Using Eqs. (25), (27), and (28) and the expressions for
the Hamada angles, 0y =0 +xpy and ¢y = o +py, one
finds

dg, _d
ap o lee"

This equation proves the straightness of the field lines
since B8 and ¥ are the Clebsch coordinates of the cur-
rent; that is,

(4n/c)j=vpxvyp (72)

B=-— (1)
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using Eq. (23) and Amphere’s law.

The expression for py, Eq. (69), is singular if x =n/
m and 6,,+0. Clearly, a resonant term, 6,,# 0 with
x=n/m, cannot be removed from the Fourier decompo-
sition of the Jacobian with a nonsingular p and, hence,
a nonsingular coordinate transformation. Consequent-
1y, Solov’ev and Shafranov? were able to find an expres-
sion for j, which has the same singular form as Eq.

(25) but is expressed in terms of the Fourier coeffi-
cients of Jacobian of the general, nonsingular, mag-
netic coordinates.
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