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Importance of plasma waves
• Along with single particle motion, understanding of linear 

waves are foundation for physical intuition for behavior of 
plasmas

• Waves play direct role in important physical processes: RF 
heating in fusion plasmas, particle acceleration by waves in 
space,  plasma turbulence in astrophysical objects
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Importance of plasma waves
• Along with single particle motion, understanding of linear 

waves are foundation for physical intuition for behavior of 
plasmas

• Waves play direct role in important physical processes: RF 
heating in fusion plasmas, particle acceleration by waves in 
space,  plasma turbulence in astrophysical objects

• Wave is collective response of plasma to perturbation, 
however, intuition for waves starts with considering single 
particle response to electric/magnetic fields that make up 
the wave

• Focus on magnetized plasmas: particle response is 
anisotropic, orientation of wave E-field wrt background 
magnetic field is essential in determining response



Wave equation, plasma dielectric model for 
linear waves

• Treat plasma as conducting medium; will lead to 
dielectric description (but start by treating plasma 
charge and currents as free)
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• Plasma effects buried in current, need model to relate 
current to E:  choose linear, tensor conductivity

j = � · E

• Need plasma response model to determine the 
conductivity tensor



Single particle response to wave fields
• Conductivity tensor tells us plasma response to 

applied electric field; useful to think about single 
particle orbits

• In particular for magnetized plasmas and wave electric 
fields that are perpendicular to B

• Two drifts matter (in uniform plasma):  ExB drift and 
polarization drift

• ExB drift is the dominant particle response for low 
frequency wave fields 

• Polarization drift is dominant at higher frequencies
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ExB and Polarization Drifts

• No currents from ExB at low freq (ions and electrons 
drift the same); above ion cyclotron freq, ions primarily 
polarize, no ExB, can get ExB current from electrons
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Model for plasma conductivity
• Use cold, two-fluid model; formally cold means:

• Assume plane wave solution (uniform plasma), 
linearize the equations:

• Ignore terms higher than first order in 
perturbation
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Plasma model, cont.
Choose B = B0ẑ , E = E1 = Exx̂ + Ez ẑ

Ion momentum equation becomes:
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Plasma model, cont.
Back to the wave equation, rewrite with plane wave assumption:

�k⇤ k⇤E� ⇤2

c2
E� i⇤µo⇥ · E = 0

Can rewrite in the following way:

M · E = 0
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Cold plasma dispersion relation
Using the cold two-fluid model for �, the dielectric tensor becomes:
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Defining � to be the angle between k and Bo, the
wave equation becomes:
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det M = 0 provides dispersion relation for waves – allowable
combinations of � and k



Alternate dielectric formulation: 
circularly polarized waves

• Previous dielectric formulation based on linearly 
polarized basis, some physical insight can be gained by 
considering a circularly polarized basis (wrt B)

• Physical insight:  ions gyrate LH, electrons RH.  LHP 
waves have stronger ion interaction (and cyclotron 
resonance), RHP waves interact with electrons

• Same set of waves contained in either basis, some are 
easier to extract from CP
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Cold plasma wave zoology

Perp. propagating (k = kxx̂) Parallel propagating (k = kz ẑ)

light waveslight waves
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Cold plasma wave zoology

Perp. propagating (k = kxx̂) Parallel propagating (k = kz ẑ)

light waveslight waves

• Resonance, n2→∞, when waves resonate with particle 
motion

• Cutoffs for n2=0, transverse EM waves will not propagate 
below these frequencies (evanescent)



Magnetic 
field lines

Low frequency waves: Alfvén waves
• For freq. much less than ion cyclotron frequency, 

primary waves are Alfvén waves

Shear Alfvén wave

k

• Primary motion: ExB motion of electrons and 
ions together (D→0)

• To pull this out of our cold plasma model: 
k = kz ẑ (� = 0)



Shear wave in cold plasma model

• Like wave on string:  magnetic field plays role of 
tension, plasma mass → string mass 
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Alfvén waves from MHD

• Linearizing this system reveals four waves: fast and slow 
magnetosonic waves, the shear Alfvén wave, and the 
entropy wave
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Shear Alfvén wave Compressional
Alfvén wave

(fast magnetosonic)

Slow magnetosonic

Magnetic 
field lines
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MHD Waves
• For freq. much less than ion cyclotron frequency, 

primary waves are Alfvén waves

sound wave response (in fast/slow modes)
 not in our cold model



Shear wave dispersion derivation

• We are looking for the shear wave, so we’ll make 
appropriate assumptions:
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Shear wave dispersion derivation, cont

• Combine these two to get:

r
✓

∂~v
∂t

+~v · —~v

◆
=�—

✓
p+

B

2

2µ

o

◆
+

~
B · —~

B

µ

o

�iwrd~v =
ikkBo

dB

µ

o

x̂

∂~B
∂t

= —⇥~v⇥~B

�iwdB = ikkdvB

o

w2 = k

2
k

B

2

µ

o

r
= k

2
kv

2
A



Currents in MHD AW

• Current in k⊥=0 AW is entirely due to ion polarization 
current: no field aligned current

• As k⊥ is introduced, current closes along the field 
(inductively driven)
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Alfvén waves in the lab

• Above: 3D measurements of shear AW 
fields and currents in LAPD at UCLA

• Right: Movie of B of SAW eigenmodes 
in cross-field plane in LAPD

• AWs important in fusion devices: AEs 
excited by fast particles (e.g. alphas)



Alfvén waves in astrophysics: MHD turbulence

• Accretion disk: large scale instability (MRI) injects Alfvén 
waves at small k

• AWs nonlinearly interact (shred each other apart) to 
generate smaller and smaller scale waves, until dissipation 
scale is reached, waves damp, energy goes into particles

• Theory needed to explain luminosity; MHD turbulence 
important in other astro contexts (e.g. solar wind, ISM)
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Collisionless damping: Landau Damping
• Warm plasma:  particles have finite thermal speed, 

some particles might have speed comparable to wave 
phase speed, can resonate

• Particles slightly slower than wave get accelerated, take 
energy from wave; particles moving slightly faster are 
decelerated, give energy back to wave

• Can have wave damping or growth: 

Resonant particles ride 
with the wave, see “DC” 
E-field, can exchange 
energy

� � ⇥f
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Collisionless damping of Alfvén waves

• Ideal MHD AW does not have E||, 
can not Landau damp

• AW with large k⊥ (violating MHD 
assump.) develops E||, can model 
with generalized Ohm’s law:

• Get dispersive kinetic Alfvén 
wave, which can Landau damp

with an approximately 30% mismatch, but the basic trend
is correct. However, we do find significant disagreement
for normalized wave numbers just below k?!s ! 1. Note
that this occurs for both sets of measurements for the
same range of wave numbers. The enhanced damping just
below k?!s ! 1 is not yet understood. One possibility is
that this may be a coupling to drift waves which anoma-
lously damp the waves. Work is currently underway to
investigate the enhanced damping for these wave num-
bers and will be reported in a future communication. The
damping plays a role in the real part of the dispersion
relation, but the disagreement shown does not affect the
theoretical curves in Fig. 3 enough to move them outside
the error bars and therefore does not change the basic
result.

Although (1) gives the precise dispersion relation for
comparison with the measurements, it does not provide
the most intuitive form for understanding the physics. For
this we turn to fluid theory, for which the dispersion
relation for nonideal, shear Alfvén waves with finite ion
temperature [12] is
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In this form, it can be seen that the parallel phase velocity
is solely a function of k?; measurement of the parallel
phase velocity directly verifies the dispersion relation (2).
For the case at hand, in which we have finite frequency
with respect to the cyclotron frequency, the phase speed
will not be appropriately reduced; only the kinetic ap-

proach described above can properly include this effect.
Lysak and Lotko [13] have shown that (2) is often a very
good approximation to the full kinetic dispersion relation
in the low frequency limit.

Except for the overall lowering of the phase velocity
due to the finite frequency correction, the fluid dispersion
relation illustrates the competition between ion and elec-
tron kinetic effects. For the measurements shown in the
upper panel of Fig. 3, the c=!pe is about 20% smaller than
!s, and hence the phase speed will grow as the perpen-
dicular length scale approaches the ion acoustic gyrora-
dius. However, because c=!pe is also close to !s, the
phase speed does not grow as fast as would be expected
for the purely kinetic limit of the dispersion relation in
which the denominator is set to unity. This effect is even
clearer in the lower panel of Fig. 3 because these two
length scales are very close to identical and, conse-
quently, the phase speed rises even more slowly as a
function of increasing k?!s.

We have made what we believe are the first detailed
measurements of the phase velocity of shear Alfvén
waves for the case which is intermediate between the
inertial and kinetic limits. The agreement between the
complex, warm plasma dispersion relation result and
experiment is good, showing that the dispersion relation
for shear Alfvén waves holds for this intermediate re-
gime. In this regime, a simple fluid picture gives the basic
physics of the two competing limits, but is inadequate to
handle the finite frequency correction and damping effect
which require that kinetic effects be included.
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Cyclotron resonance and heating
• Another collisionless damping mechanism: waves with 

freq. near the cyclotron frequency can resonate with 
particle gyration; with finite T get absorption

• Used as heating mechanism for fusion plasmas.  One 
of earliest ideas: heating by SAW in magnetic “beach”

• Launch SAW into 
decreasing field (e.g. from 
end of mirror machine)

• Waves absorbed where 
� � �i

• Modern schemes use fast wave to heat ions (no 
parallel access to tokamak core)



Higher frequency: whistler waves

• Dispersive waves:  phase/group velocity depends on 
frequency of wave

Primarily parallel propagating mode with �i < � < �e

Electrons E �B, ions polarize, get finite S and D

Can show in this limit:
� � k2v2

A

�i

the group velocity of this mode:
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Whistlers in the magnetosphere

• Lightning strikes excite broad 
range of RF waves in 
magnetosphere

• Some whistler waves are born at 
strike site, propagate along 
earth’s dipole field

(earth)

• Because of dispersion, higher frequency waves go faster than 
lower frequency: higher freq at front of wave packet

• Whistler in magnetosphere are in audible range of 
frequencies: picked up by radio/telephone operators in 
WWI/II; chirp downward in frequency (hence “whistler”)



Even higher freq: modified light waves

• Wave cutoff below plasma frequency (evanescent)

• Phase velocity faster than c (wavelength longer in 
plasma)

For � > �pe, have modified light waves, no plasma normal
modes (too fast for electrons to keep up!)

Example: “O-mode” transverse waves, k = kx̂, E = Ez ẑ
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Waves as diagnostics: interferometer

• Phase speed of EM wave in plasma depends on 
density, compare wave sent through plasma with 
wave in vacuum:  plasma wave will advance phase 
faster, develop phase shift w/ respect to vacuum 
wave

• Standard lab diagnostic, also used in astronomy

�� �
�

nedl



Reflection of light waves by plasma
• Transverse EM waves are cutoff for frequencies below 

the plasma freq. - incident waves are reflected (similar 
concept can be applied to reflection from conductors/
metals)

• Natural example: AM radio wave reflection from 
ionosphere



 Reflection as plasma diagnostic
Propagate EM wave 
(microwave range) into plasma, 
up dens. grad.

Reflects at cutoff, radar ranging 
of cutoff surface location (scan 
freq for profile)

Right: simulation of microwave 
propagation to cutoff in 
tokamak

Can also measure turbulence: 
both through scattering & 
modulation of reflection 



Faraday Rotation

• Recall the alternate, circularly polarized formulation of the 
dielectric

• RHP and LHP components of an EM wave acquire different 
phase velocity in plasma, polarization rotates while propagating 
along B

• Measure line-of-sight B in lab plasmas, astrophysical plasmas 
(above: astro jet)


