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PART I: DESCRIBING A FUSION PLASMA



METHOD I: SELF-CONSISTENT PARTICLE PUSHING
I An intuitive idea is to solve for the motion of all the particles

iteratively, combining Newton’s law with Maxwell equations
I At each time step i, solve
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I Fast solvers exist for the electromagnetic fields, some relying on
a subsidiary mesh, some not needing a mesh

I Even with fast solvers, problem still not tractable even with the
most powerful computers when N ∼ 1020 − 1022 as in magnetic
fusion grade plasmas



METHOD II: COARSE-GRAIN AVERAGE IN PHASE

SPACE

(From G. Lapenta’s: https://perswww.kuleuven.be/ u0052182/weather/pic.pdf )
I For hot and diffuse systems with a large number of particles,

following every single particle is a waste of time and resources
I Replace the discrete particles with smooth distribution function

f (x,v, t) defined so that

f (x,v, t)dxdv

is the expected number of particles in the infinitesimal
six-dimensional phase-space volume dxdv.



DISTRIBUTION FUNCTION AND VLASOV EQUATION
I Macroscopic (fluid) quantities are velocity moments of f

n(x, t) =

∫∫∫
f (x,v, t)dv Density

nV(x, t) =

∫∫∫
vf (x,v, t)dv Mean flow

P(x, t) = m
∫∫∫

(v−V) (v−V) fdv Pressure tensor

I Conservation of f along the phase-space trajectories of the
particles determines the time evolution of f :
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=
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+
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· ∇f +
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dt
· ∇vf = 0

dx
dt

= v
dv
dt

=
q
m

(E + v× B)

⇒ ∂f
∂t

+ v · ∇f +
q
m

(E + v× B) · ∇vf = 0

This is the Vlasov equation



THE BOLTZMANN EQUATION

I In fusion plasmas, we separate, leading to the Boltzmann
equation:

∂f
∂t

+ v · ∇f +
q
m

(E + v× B) · ∇vf =

(
∂f
∂t

)
c

This equation to be combined with Maxwell’s equations:

∇× E = −∂B
∂t

∇× B = µ0J +
1
c2
∂E
∂t

I Nonlinear, integro-differential, 6-dimensional PDE
I Describes phenomena on widely varying length (10−5 – 103 m)

and time (10−12 – 102 s) scales
I Still not a piece of cake, and never solved as such for fusion

plasmas



MOMENT APPROACH

∂f
∂t

+ v · ∇f +
q
m

(E + v× B) · ∇vf =

(
∂f
∂t

)
c

I Taking the integrals
∫∫∫

dv,
∫∫∫

mvdv and
∫∫∫

mv2/2dv of this
equation, we obtain the exact fluid equations:

∂ns

∂t
+∇ · (nsVs) = 0 Continuity

mn
(
∂Vs

∂t
+ Vs · ∇Vs

)
= qsns (E + Vs × B)−∇ · Ps + Rs Momentum

d
dt

(
3
2

ps

)
+

5
2

ps∇ ·Vs + πs : ∇Vs +∇ · qs = 0 (Energy)

with Ps = psI + πs.
I Closure problem: for each moment, we introduce a new

unknown ⇒ End up with too many unknowns
I Need to make approximations to close the moment hierarchy



KINETIC MODELS VS FLUID MODELS

I For some fusion applications/plasma regimes (heating and
current drive, transport), kinetic treatment cannot be avoided

I Simplify and reduce dimensionality of the Vlasov equation with
approximations:

I Strong magnetization : Gyrokinetic equation
I Small gyroradius compared to relevant length scales : Drift

kinetic equation
I Vanishing gyroradius : Kinetic MHD

I In contrast, fluid models are based on approximate expressions
for higher order moments (off-diagonal entries in pressure
tensor, heat flux) in terms of lower order quantities(density,
velocity, diagonal entries in pressure tensor)

I We will now focus on the relevant regime and the
approximations made to derive a widely used fluid model: the
ideal MHD model



PART II: THE IDEAL MHD MODEL



LAWSON CRITERION AND MHD

Condition for ignition: pτE ≥ 8 bar.s Tmin ∼ 15keV

I The maximum p is limited by the stability properties
Job of MHD

I The maximum τE is determined by the confinement
properties
Job of kinetic models



PHILOSOPHY

I The purpose of ideal MHD is to study the macroscopic behavior
of the plasma

I Use ideal MHD to design machines that avoid large scale
instabilities

I Regime of interest
I Typical length scale: the minor radius of the device a ∼ 1m

Wave number k of waves and instabilitities considered: k ∼ 1/a

I Typical velocities: Ion thermal velocity speed vT ∼ 500km/s

I Typical time scale: τMHD ∼ a/vT ∼ 2µs
Frequency ωMHD of associated waves/instabilities ωMHD ∼ 500kHz



EXAMPLE: VERTICAL INSTABILITY

Figure from F. Hofmann et al., Nuclear Fusion 37 681 (1997)



IDEAL MHD - MAXWELL’S EQUATIONS

I a� λD, the distance over which charge separation can take place
in a plasma
⇒ On the MHD length scale, the plasma is neutral : ni = ne

I ωMHD/k� c and vTi � vTe � c so we can neglect the
displacement current in Maxwell’s equations:

ni = ne

∇ · B = 0

∇× E = −∂B
∂t

∇× B = µ0J



IDEAL MHD - MOMENTUM EQUATION

I a� λD and a� rLe (electron Larmor radius)
I ωMHD � ωpe, ωMHD � ωce

I The ideal MHD model assumes that on the time and length
scales of interest, the electrons have an infinitely fast response
time to changes in the plasma

I Mathematically, this can be done by taking the limit me → 0
I Adding the ion and electron momentum equation, we then get

ρ
dV
dt
− J× B +∇p = −∇ · (πi + πe)

where ρ = min and V is the ion fluid velocity
I If the condition vTiτii/a� 1 is satisfied in the plasma

ρ
dV
dt

= J× B−∇p (Ideal MHD momentum equation)



IDEAL MHD - ELECTRONS

I In the limit me → 0, the electron momentum equation can be
written as

E + V× B =
1
en

(J× B−∇pe −∇ · πe + Re)

I This is called the generalized Ohm’s law
I Different MHD models (resitive MHD, Hall MHD) keep

different terms in this equation
I If rLi/a� 1, vTiτii/a� 1, and (me/mi)

1/2(rLi/a)2(a/vTiτii)� 1, the
momentum equation becomes the ideal Ohm’s law

E + V× B = 0

I The ideal MHD plasma behaves like a perfectly conducting fluid



ENERGY EQUATION

I Define the total plasma pressure p = pi + pe

I Add electron and ion energy equations

I Under the conditions rLi/a� 1 and vTiτii/a� 1, this simplifies as

d
dt

(
p
ρ5/3

)
= 0

I Equation reminiscent of pVγ = Cst: the ideal MHD plasma
behaves like a monoatomic ideal gas undergoing a reversible
adiabatic process



IDEAL MHD - SUMMARY

∂ρ
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+∇ · (ρV) = 0

ρ
dV
dt

= J× B−∇p

d
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p
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)
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∇ · B = 0
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VALIDITY OF THE IDEAL MHD MODEL (I)
I Are the conditions for the validity of ideal MHD(

mi

me

)1/2 (viτii

a

)
� 1

rLi

a
� 1

(rLi

a

)2
(

me

mi

)1/2 a
vTiτii

� 1

mutually compatible?
I Define x = (mi/me)

1/2(vTiτii/a), y = rLi/a.

x� 1 (High collisionality) y� 1 (Small ion Larmor radius)

y2/x� 1 (Small resistivity)

There exists a regime for which
ideal MHD is justified (Figure
from Ideal MHD by J.P. Freidberg,
CUP, 2014)

Is that the regime of magnetic
confinement fusion?



VALIDITY OF THE IDEAL MHD MODEL (II)

I Express three conditions in terms of n, T, a and β, with β the
ratio of plasma pressure and magnetic pressure

I For β = 5% and a = 1m (realistic fusion parameters), we find

The regime of validity of ideal
MHD does NOT coincide with the
fusion plasma regime (Figure
from Ideal MHD by J.P. Freidberg,
CUP, 2014)

The collisionality of fusion
plasmas is too low for the ideal
MHD model to be valid.

Is that a problem?



VALIDITY OF THE IDEAL MHD MODEL (III)

I It turns out that ideal MHD often does a very good job at
predicting stability limits for macroscopic instabilities

I This is not due to luck but to subtle physical reasons

I One can show that collisionless kinetic models for macroscopic
instabilities are more optimistic than ideal MHD

I This is because ideal MHD is accurate for dynamics
perpendicular to the fields lines

I Designs based on ideal MHD calculations are conservative
designs



FROZEN IN LAW (I)
I E + V× B = 0: in the frame moving with the plasma, the electric

field is zero
I The plasma behaves like a perfect conductor
I The magnetic field lines are “frozen” into the plasma motion

⇒



FROZEN IN LAW (II): PROOF
I ∂B/∂t = ∇× E , E + V× B = 0⇒ ∂B/∂t = ∇× (V× B)
I Calculate the change in the flux Φ =

∫∫
S(t) B · ndS across a

moving surface with velocity u⊥
Image from Principles of
Magnetohydrodynamics With
Applications to Laboratory and
Astrophysical Plasmas by J.P.
Goedbloed and S. Poedts,
Cambridge University Press
(2004)

dΦ

dt
=

∫∫
S(t)

∂B
∂t
· ndS−

∮
∂S(t)

u⊥ × B · dl

=

∫∫
∇× (V× B) · ndS−

∮
∂S(t)

u⊥ × B · dl

=

∮
∂S(t)

(V− u⊥) · dl

= 0 if u⊥ = V

i.e. the plasma is tied to the field lines



MAGNETIC RECONNECTION
Image from Principles of
Magnetohydrodynamics With
Applications to Laboratory and
Astrophysical Plasmas by J.P.
Goedbloed and S. Poedts,
Cambridge University Press
(2004)

I Magnetic reconnection: a key phenomenon in astrophysical,
space, and fusion plasmas

I Cannot happen according to ideal MHD

I Need to add additional terms in Ohm’s law to allow
reconnection: resistivity, off-diagonal pressure tensor terms,
electron inertia, . . .

I Associated instabilities take place on longer time scales than
τMHD



PART III: MHD EQUILIBRIUM



EQUILIBRIUM STATE

I By equilibrium, we mean steady-state: ∂/∂t = 0
I Often, for simplicity and/or physical reasons, we focus on static

equilibria: V = 0

∇ · B = 0
∇× B = µ0J
J× B = ∇p

A more condensed form is

∇ · B = 0 (∇× B)× B = µ0∇p

Note that the density profile does not appear



1D EQUILIBRIA (I)

θ-pinch
Z-pinch

Combine the two to get....

(Figure from Ideal MHD by J.P. Freidberg, CUP, 2014)



1D EQUILIBRIA (II)

Screw pinch

(Figure from Ideal MHD by J.P.
Freidberg, CUP, 2014)

I Equilibrium quantities only depend on r
I Plug into∇ · B = 0 , (∇× B)× B = µ0∇p to find:

d
dr

(
p +

B2
θ + B2

z
2µ0

)
+

B2
θ

µ0r
= 0

Balance between plasma pressure, magnetic pressure, and
magnetic tension

I Two free functions define equilibrium: e.g. Bz and p, or Bθ and Bz



2D EQUILIBRIA: GEOMETRY

Top view Cross section

Toroidal axisymmetry: ∂/∂φ ≡ 0



TOROIDALLY AXISYMMETRIC EQUILIBRIA
Step 1:

B = Bφ(R,Z)eφ+Bp(R,Z) and ∇ · B = 0 ⇒ ∇ · Bp = 0

⇒ B = Bφeφ +
1
R
∇Ψ× eφ

Ψ = RAφ, with A vector potential: ∇×A = B.

Step 2:

∇× B = µ0J⇒


µ0Jφ = − 1

R

[
R ∂
∂R

(
1
R
∂Ψ
∂R

)
+ ∂2Ψ

∂Z2

]
= − 1

R∆∗Ψ

µ0Jp = 1
R∇(RBφ × eφ)

Step 3:

J× B = ∇p


·B ⇒ ∇Ψ×∇p = 0 ⇒ p = p(Ψ)

·J = 0 ⇒ ∇(RBφ)×∇Ψ = 0 ⇒ RBφ = F(Ψ)



I The regions of constant pressure are nested toroidal surfaces

I Magnetic fields and currents lie on these nested surfaces



GRAD-SHAFRANOV EQUATION

Last step: [J×B = ∇p] ·∇Ψ gives the Grad-Shafranov equation (GSE):

R
∂

∂R

(
1
R
∂Ψ

∂R

)
+
∂2Ψ

∂Z2 = −µ0R2 dp
dΨ
− F

dF
dΨ

I Second-order, nonlinear, elliptic PDE. Derived independently by
H. Grad1 and V.D. Shafranov2.

I The free functions p and F determine the nature of the
equilibrium

I In general, the GSE has to be solved numerically

1Proceedings of the Second United Nations Conference on the Peaceful Uses of Atomic
Energy, Vol. 31, p.190

2Sov. Phys. JETP 6, 545 (1958)



EXAMPLES (I)

R/R
0

Z/R
0

−1.5 −1 −0.5 0 0.5 1 1.5
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0.2

0.4

0.6

Grad-Shafranov equilibrium for JET tokamak



EXAMPLES (II)

X

Y

−1 0 1

−5

0

5

Grad-Shafranov equilibrium for Field Reversed Configuration



NUMERICAL SOLUTION TO THE GRAD-SHAFRANOV

EQUATION

I Magnetic equilibrium serves as input to stability, wave and
transport codes⇒ important to develop fast and accurate solvers

I Many, many solvers available, from very simple to very
advanced (FD, FEM, Integral equations, inverse solvers, . . . )

I Free boundary equilibria more challenging than fixed boundary
equilibria

I Equilibria with purely toroidal flow are determined by a close
variant of the Grad-Shafranov equation⇒many
Grad-Shafranov codes can compute such equilibria

Equilibria with both toroidal and poloidal flow can be much
more challenging; only a handful of codes available



3D EQUILIBRIA (I)

∂/∂φ 6= 0



3D EQUILIBRIA (II)

I Equilibrium equations∇ · B = 0 , (∇× B)× B = µ0∇p still hold
I Existence of nested toroidal surfaces not guaranteed anymore

Tokamak

R/R
0

Z
/R

0

−1.5 −1 −0.5 0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Stellarator (3D)

I Computing 3D equilibria fast and accurately still a challenge
I Several existing codes, based on different

assumptions/approximations and used to design and study
stellarators: VMEC, PIES, SPEC, HINT, NSTAB



PART IV: MHD STABILITY



WHAT DO WE MEAN BY MHD STABILITY?

I That the plasma is initially in equilibrium does not mean it is
going to remain there

I The plasma is constantly subject to perturbations, small and
large

I The purpose of stability studies is to find out how the plasma
will react to these perturbations

I Will it try to return to the initial steady-state?
I Will it find a new acceptable steady-state?
I Will it collapse?



A MECHANICAL ANALOG

Figure from J.P. Freidberg, Ideal MHD, Cambridge University Press
(2014)



SOLVING FULL NONLINEAR MHD EQUATIONS

I Here is an idea to study stability of a magnetically confined
plasma:

I Choose a satisfying plasma equilibrium
I Perturb it
I Solve the full MHD equations with a computer
I Analyze results

I Such an approach provides knowledge of the entire plasma
dynamics

I There exist several numerical codes that can do that, for various
MHD models (not only ideal): M3D, M3D-C1, NIMROD

I Computationally intensive

I Get more information than one needs?



Figure from R. Paccagnella et al., Nuclear Fusion 49 035003 (2009)



LINEAR STABILITY (I)
I Ideal MHD dynamics can be so fast and detrimental that one

may often require linear stability for the equilibrium

I This can simplify the mathematical analysis tremendously
I Start with an MHD equilibrium:
∇ · B0 = 0 , (∇× B0)× B0 = µ0∇p0

I Take full ideal MHD equations, and write Q = Q0(r) + Q1(r, t)
for each physical quantity, where Q1 is considered very small
compared to Q0

I Drop all the terms that are quadratic or higher orders in the
quantities Q1 (linearization)



LINEAR STABILITY (II)

∂ρ1

∂t
+∇ · (ρ0v1) = 0

ρ0
∂v1

∂t
= J1 × B0 + J0 × B1 −∇p1

∂p1

∂t
+ v1 · ∇p + γp∇ · v1 = 0

∂B1

∂t
= ∇× (v1 × B0)

∇ · B1 = 0
µ0J1 = ∇× B1

I By design, the system is now linear in the unknown quantities
ρ1, v1, J1, B1, p1

I Much easier to solve in a computer
I There’s a trick that makes life even easier



LINEAR STABILITY (III)
I Introduce the plasma displacement vector ξ defined such that

v1 =
∂ξ

∂t
v1(r, 0) =

∂ξ

∂t
(r, 0) ξ(r, 0) = 0

I Linearized ideal MHD equations reduce to

ρ
∂2ξ

∂t2 = F (ξ) with

F (ξ) =
1
µ0
{∇ × [∇× (ξ × B0)]} × B0 + (∇× B0)× [∇× (ξ × B0)]

+∇ (ξ · ∇p0 + γp0∇ · ξ)

I F is called the ideal MHD linear force operator
I The problem of linear stability is reduced to an initial value

problem with three linear equations and three unknowns: the
components of ξ



LINEAR STABILITY (IV): NORMAL MODE ANALYSIS
I Even the IVP in the previous slide may give more information

than we need
I Sometimes, we just want to know if the equilibrium is stable or

not
I A normal mode analysis provides the desired framework for this
I Write ξ(r, t) = ξ̂ (r) e−iωt.
ωI > 0 corresponds to exponential growth.

I The linearized momentum equation takes the form

−ρω2ξ̂ = F(ξ̂)

I ω2 is an an eigenvalue of the linear operator −F(ξ̂)/ρ
I It can be showed (some lines of algebra...) that F is a self-adjoint

operator
I In ideal MHD, ω2 is a purely real quantity
I ω2 ≥ 0 means the mode is stable; ω2 ≤ 0 means the mode is

unstable



EIGENVALUES IN IDEAL MHD

Figure from Principles of Magnetohydrodynamics With Applications to
Laboratory and Astrophysical Plasmas by J.P. Goedbloed and S. Poedts,
Cambridge University Press (2004)



ILLUSTRATION: WAVES IN IDEAL MHD (I)

I Consider the stability of an infinite, homogeneous plasma:

B = B0
−→ez

J =
−→
0

p = p0

ρ = ρ0

v = 0

I Given geometry, expand ξ̂(r) as

ξ̂(r) = ξ̃eik·r

I Dynamics is anisotropic because of the magnetic field: k⊥ + k‖ez

I Without loss of generality,
−→
k = k⊥

−→ey + k‖
−→ez



ILLUSTRATION: WAVES IN IDEAL MHD (II)
I −ρω2ξ̂ = F(ξ̂) can be written as

ω2ρ0ξ̃ =
B2

0
µ0

{
k×

[
k×

(
ξ̃ × ez

)]}
× ez + γp0kk · ξ̃

I Writing the expression for each component, we get the system ω2 − k2
‖v

2
A 0 0

0 ω2 − k2v2
A − k2

⊥v2
S −k‖k⊥v2

S
0 −k⊥k‖v2

S ω2 − k2
‖v

2
S


 ξ̂x

ξ̂y

ξ̂z

 =

 0
0
0


I Two key velocities appear:

vA =

√
B2

0
µ0ρ0

vS =

√
γ

p0

ρ0

vA is called the Alfvén velocity, in honor of Hannes Alfvén, the
Swedish scientist who first described MHD waves, and vs is the
adiabatic sound speed



ILLUSTRATION: WAVES IN IDEAL MHD (III)

 ω2 − k2
‖v

2
A 0 0

0 ω2 − k2v2
A − k2

⊥v2
S −k‖k⊥v2

S
0 −k⊥k‖v2

S ω2 − k2
‖v

2
S


 ξ̂x

ξ̂y

ξ̂z

 =

 0
0
0


I For nontrivial solutions, determinant of the matrix should be 0
I This leads to the following three possibilities for ω2:

ω2 = k2
‖v

2
A , ω

2 =
k2

2
(
v2

A + v2
S
)1±

√√√√1− 4
k2
‖

k2

v2
Av2

S(
v2

S + v2
A

)2


I One can see that ω2 ≥ 0
I The infinite homogeneous magnetized plasma is always MHD

stable
I Some of the modes above become unstable in magnetic fusion

configurations, because of gradients and field line curvature



SHEAR ALFVÉN WAVE

I Branch ω2 = k2
‖v

2
A

(Figure from Ideal
MHD by J.P.
Freidberg, CUP,
2014)

I Transverse wave
I Balance between plasma inertia and field line tension
I Incompressible⇒ often the most unstable MHD mode in fusion

devices



FAST MAGNETOSONIC WAVE
I Fast magnetosonic wave given by

ω2 =
k2

2
(
v2

A + v2
S
)1 +

√√√√1− 4
k2
‖

k2

v2
Av2

S(
v2

S + v2
A

)2


I Physics simplifies in the limit v2

S � v2
A: it is then called the

compressional Alfvén wave, with dispersion relation ω2 = k2v2
A

(Figure from Ideal
MHD by J.P.
Freidberg, CUP,
2014)

I Plasma motion perpendicular to field lines, compressible
I Oscillation between plasma kinetic energy and magnetic

compressional energy



SLOW MAGNETOSONIC WAVE
I Slow magnetosonic wave given by

ω2 =
k2

2
(
v2

A + v2
S
)1−

√√√√1− 4
k2
‖

k2

v2
Av2

S(
v2

S + v2
A

)2


I Physics simplifies in the limit v2

S � v2
A: it is then called the sound

wave, with dispersion relation ω2 = k2v2
S

(Figure from Ideal
MHD by J.P.
Freidberg, CUP,
2014)

I Plasma motion parallel to field lines, compressible
I Oscillation between plasma kinetic energy and plasma internal

energy (plasma pressure)



COMMON MHD INSTABILITIES (I)

Interchange instability

(Figure from Plasma Physics and Fusion Energy by J.P. Freidberg, CUP, 2008)



COMMON MHD INSTABILITIES (II)

Ballooning instability
(Figure from Plasma Physics and Fusion Energy by J.P. Freidberg, CUP, 2008)



COMMON MHD INSTABILITIES (III)

Kink instability

(Figure from Plasma Physics and Fusion Energy by J.P. Freidberg, CUP, 2008)



LINEAR STABILITY: ENERGY APPROACH
I Change in potential energy: δW =

−→
F ·
−→
dl

I Static equilibrium condition at x0: δW
∣∣∣
x=x0

= 0

I Stability

δ2W
∣∣∣
x=x0

> 0

δ2W
∣∣∣
x=x0

< 0

δ2W
∣∣∣
x=x0

= 0



IDEAL MHD ENERGY PRINCIPLE (I)
I For historical reasons, the second variation is called δW in the

plasma physics jargon
I A useful variational principle can be derived in ideal MHD,

called the energy principle , which takes the following form:

ω2 =
δW(ξ)

K(ξ)

where

δW(ξ) = −1
2

∫
ξ · F(ξ)dV

F (ξ) =
1
µ0
{∇ × [∇× (ξ × B0)]} × B0 + (∇× B0)× [∇× (ξ × B0)]

+∇ (ξ · ∇p0 + γp0∇ · ξ)

K(ξ) =
1
2

∫
ρ|ξ|2dV



IDEAL MHD ENERGY PRINCIPLE (II)

ω2 =
δW(ξ)

K(ξ)
δW(ξ) = −1

2

∫
ξ · F(ξ)dV

I Energy Principle: An ideal MHD equilibrium is stable if and
only if δW(ξ > 0 for all bounded ξ satisfying the boundary
conditions

I Energy principle very useful to prove instability of an
equilibrium by coming up with a good guess for ξ that makes
δW negative

I Formula also very helpful to calculate the ω2 numerically with
high accuracy



POST SCRIPTUM: THE COURANT INSTITUTE OF
MATHEMATICAL SCIENCES (CIMS) AT NYU



CIMS IN MANHATTAN



I Abel prize in 2005,
2007, 2009 and 2015

I 18 members of the
National Academy of
Sciences

5 members of the
National Academy of
Engineering



I Specialization in applied math, scientific computing,
mathematical analysis

I Particular emphasis on Partial Differential Equations

I PhD programs in Mathematics, Atmosphere and Ocean Science,
Computational Biology

I Masters of Science in Mathematics, Masters of Science in
Scientific Computing, Masters of Science in Data Science,
Masters of Science in Math Finance

I ∼ 60 faculty
∼ 100 PhD students





MFD DIVISION AT CIMS

I Founded by Harold Grad in 1954

I 3 faculty, 3 post-docs, 2 PhD students

I Work on MHD, wave propagation, kinetic models
Analytic “pen and paper” work
Development of new numerical solvers

I Collaboration with colleagues specialized in scientific
computing, computational fluid dynamics, stochastic calculus,
etc.

I Funding currently available for PhD students

I Feel free to contact me if you have any questions


