SULI Introductory Course in Plasma Physics Plasma Astrophysics

Amitava Bhattacharjee

Department of Astrophysical Sciences Princeton Plasma Physics Laboratory Princeton University

June 8-12, 2015

- In most of the universe, plasma is the "first' state of matter, and by a very large margin. Out there, fully intact atoms are much rarer. Practically all the visible contents of the cosmos – not just stars, but even regions of interstellar dust containing barely a million particles per cubic meter – are in a plasma state.
- *Tools of discovery*

__ Light (photons) from space- and ground-based instruments

__ *In situ* satellites

__ Theoretical models and computer simulations

Equations of MHD

Newton

$$
\frac{m\mathbf{a}}{vol} = \frac{\mathbf{F}}{vol} \longrightarrow \rho \frac{d\mathbf{v}}{dt} = -\nabla P + \mathbf{J} \times \mathbf{B}
$$

$$
\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla P + \mathbf{J} \times \mathbf{B}
$$
Ohm's Law:
$$
V = IR \longrightarrow \mathbf{E}' = \mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{J}
$$

$$
\text{Maxwell}' \text{ s equations:}
$$
\n
$$
\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \text{ and } \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
$$

What is Magnetic Reconnection?

If a plasma is perfectly conducting, that is, it obeys the ideal Ohm's law,

$$
\mathbf{E} + \mathbf{v} \times \mathbf{B}/c = 0
$$

B-lines are frozen in the plasma, and no reconnection occurs.

Fig. 1.6. Magnetic flux conservation: if a curve C_1 is distorted into C_2 by plasma motion, the flux through C_1 at t_1 equals the flux through C_2 at t_2 .

Fig. 1.7. Magnetic field-line conservation: if plasma elements P_1 and P_2 lie on a field line at time t_1 , then they will lie on the same line at a later time t_2 .

Magnetic Reconnection: Working Definition

Departures from ideal behavior, represented by

$$
\mathbf{E} + \mathbf{v} \times \mathbf{B} / c = \mathbf{R}, \quad \nabla \times \mathbf{R} \neq \mathbf{0}
$$

allow field lines to break and reconnect.

In the generalized Ohm's law for weakly collisional or collisionless plasmas, **R** contains resistivity, Hall current, electron inertia and pressure.

Magnetic Island Formation Due To Reconnection

FIG. 1. (a) The topology of field lines in the Harris equilibrium $B = B_0 \tanh(z/a)\hat{x}$. (b) The topology of field lines when the perturbation $\mathbf{b} = b \sin(kx)\hat{\mathbf{z}}$ is imposed on the Harris equilibrium.

Why is magnetic reconnection important?

- Magnetic reconnection enables a system to access states of lower energy by topological relaxation of the magnetic field. The energy thus liberated can be converted to the kinetic energy of particles and heat. Since the Universe is permeated by magnetic fields (in Nature and the laboratory), magnetic reconnection is a ubiquitous mechanism wherever such phenomena occur, including eruptive stellar/solar flares, magnetospheric storms, and disruptions in fusion plasmas.
- By allowing small-scale, tangled fields to reconnect and forming larger-scale fields, reconnection plays a critical role in the "dynamo effect"----the mechanism most widely invoked on how large-scale magnetic fields in the Universe are spontaneously generated from various types of plasma turbulence. Understanding of fast reconnection is central to the question: "Why is the Universe magnetized?"

Classical (2D) Steady-State Models of Reconnection

Sweet-Parker [Sweet 1958, Parker 1957]

$$
\underbrace{\hspace{2.5cm}}\hspace{2.5cm}
$$

Geometry of reconnection layer : Y-points

Length of the reconnection layer is of the order of the system size \gg width Δ

Reconnection time scale

$$
\tau_{SP} = \left(\tau_A \tau_R\right)^{1/2} = S^{1/2} \tau_A
$$

$$
\begin{aligned} \text{Solar flares: } S \sim 10^{12}, & \tau_A \sim 1s \\ \Rightarrow \tau_{SP} \sim 10^6 s \end{aligned}
$$

Too long to account for solar flares!

Impulsive Reconnection: The Onset/Trigger Problem

Dynamics exhibits an impulsiveness, that is, a sudden change in the time-derivative of the reconnection rate.

The magnetic configuration evolves slowly for a long period of time, only to undergo a sudden dynamical change over a much shorter period of time. Dynamics is characterized by the formation of nearsingular current sheets which need to be resolved in computer simulations: a classic multi-scale problem coupling large scales to small.

Examples Magnetospheric substorms Impulsive solar/stellar flares

Substorms in the Earth'**s Magnetosphere**

Photograph of the aurora by Dirk Obudzinski, near the Yukon River in Circle, Alaska (August 29, 2000).

The Flaring Sun

Courtesy: The Solar Dynamics Observatory

Generalized Ohm's law

 $\frac{(\text{i})}{(\text{iv})} = \frac{vB}{B^2 / \mu_0 en_e l} = \frac{v\ell}{B / \mu_0 en_e}$

 $\frac{(\text{ii})}{(\text{iii})} = \frac{vB}{p_e / en_e \ell} = \frac{v\ell}{k_B T / eB} = \left(\frac{v}{c_s}\right)$

J.

J.

J.

(i)

(v)

 $\mathbf{E} = -\mathbf{v}_i \times \mathbf{B} - \frac{m_e}{a}$ *e* $\frac{d\mathbf{v}_e}{dt}$ − $\frac{1}{en_e}$ $\nabla \cdot \vec{P}_e$ + 1 en_e $\mathbf{J} \times \mathbf{B} + \eta_e \mathbf{J}$ (i) (ii) (iii) (iv) (v) $=\frac{vB}{\sqrt{B}}$ $\eta_e B / \mu_0 \ell$ $=\frac{\ell v \mu_0}{\ell}$ $\eta_{_{e}}$ $\equiv R_m$ $\frac{v}{\text{(ii)}} = \frac{v}{m_e vB/\mu_0 e^2}$ $\frac{e^{2}}{n_{e}e^{2}} = \frac{e^{2}}{m_{e}/\mu_{0}e^{2}n_{e}}$ $=\frac{\ell}{\ell}$ c / ω_{pe} $\sqrt{2}$ $\overline{}$ \setminus $\begin{array}{c} \hline \end{array}$ 2 Importance of term depends on length scale What's really important?

 $=\left(\frac{v}{v}\right)$

 \setminus

 \setminus

 \int

 $\sqrt{ }$

 \setminus $\overline{}$ $\sqrt{ }$

 v_A

 $\left| \frac{\ell}{2} \right|$

 \setminus $\overline{}$

 $\sqrt{ }$

 \int

 $\rho_{_i}$

 $\left| \frac{\ell}{\ell} \right|$

 \setminus

 $\sqrt{ }$

 \setminus $\overline{}$

 \setminus

 \int **STATE**

 c / ω_{pi}

 \setminus

'

 \int

' '

 $\left(\frac{v}{v}\right)$

of solution

On large scales plasma is ideal conductor

Hall MHD Model and the Generalized Ohm'**s Law**

In high-*S* plasmas, when the width Δ_{η} of the thin current sheet satisfies

 $\Delta_{\eta} < c/\omega_{pi}$

"collisionless" terms in the generalized Ohm's law cannot be ignored.

€ Generalized Ohm's law (dimensionless form)

$$
\mathbf{E} + \mathbf{v} \times \mathbf{B} = \frac{1}{S} \mathbf{J} + d_e^2 \frac{d\mathbf{J}}{dt} + \frac{d_i}{n} (\mathbf{J} \times \mathbf{B} - \nabla \cdot \vec{p}_e)
$$

Electron skin depth Ion skin depth Electron beta

$$
d_e \equiv L^{-1} (c/\omega_{pe})
$$

$$
d_i \equiv L^{-1} (c/\omega_{pi})
$$

$$
\beta_e
$$

Transition from Collisional to Collisionless Regimes in MRX

Fig.2; Comparison of neutral sheet configuration described by measured magnetic field vectors and flux counters for high (collisional) and low density cases; (a) Collisional regime $(\lambda_{mfp} \sim 1mm << \delta$)); (b) Nearly collisionless regime ($\lambda_{mfp} \sim 1cm$ \sim δ). Out-of plane fields are depicted by the color codes ranged -50 G <Bt <50 G.

Linkage between space and laboratory plasmas

$$
d_i/\,\delta_{sp} \sim 5(\;\lambda_{mfp}/L)^{1/2}
$$

Magnetospheric Multiscale Mission

- The MMS Mission science will be conducted by the SMART (Solving Magnetospheric Acceleration, Reconnection and Turbulence) Instrument Suite Science Team and a group of three Interdiscliplinary Science (IDS) teams.
- Launched in March 2015.

http://mms.space.swri.edu

(Courtesy: J. Burch, SWRI)

A Fundamental Universal Process

Magnetic reconnection is important in the (a) Earth's magnetosphere, (b) in the solar corona (solar flares and CMEs) and throughout the universe (high energy particle acceleration). Simulations (c) guide the MMS measurement strategy.

(Courtesy: J. Burch, SWRI)

Plasmoid Instability of *Large-Scale* Current Sheets

Classical (2D) Steady-State Models of Reconnection

Sweet-Parker [Sweet 1958, Parker 1957]

$$
\underbrace{\hspace{2.5cm}}\hspace{2.5cm}
$$

Geometry of reconnection layer : Y-points

Length of the reconnection layer is of the order of the system size \gg width Δ

Reconnection time scale

$$
\tau_{SP} = \left(\tau_A \tau_R\right)^{1/2} = S^{1/2} \tau_A
$$

$$
\begin{aligned} \text{Solar flares: } S \sim 10^{12}, & \tau_A \sim 1s \\ \Rightarrow \tau_{SP} \sim 10^6 s \end{aligned}
$$

Too long to account for solar flares!

A Low Amplitude Random Forcing is Added $\partial_t(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\nabla p - \nabla \psi \nabla^2 \psi + \epsilon \mathbf{f}(\mathbf{x}, t)$ $\langle f_i(\mathbf{x},t) f_i(\mathbf{x}',t') \rangle \sim \delta_{ij} \delta(\mathbf{x}-\mathbf{x}') \delta(t-t')$

The thin current sheet is explosively stable over a critical Lundquist number, forming, ejecting, and coalescing a hierarchy of plasmoids.

LABORATORY

B., Huang, Rogers and Yang 2009, Huang and B. 2010

Fluxes of energetic electrons peak within magnetic islands [Chen et al., Nature Physics, 2008]

e bursts & bipolar Bz & Ne peaks \sim 10 islands within 10 minutes

Reconnection Time of 25% of Initial Flux

- Webster's 1913 Dictionary: "*The quality or state of being turbulent; a disturbed state; tumult; disorder, agitation.*"
- Alexandre J. Chorin, Lectures on Turbulence Theory (Publish or Perish, Inc., Boston 1975): "*The distinguishing feature of turbulent flow is that its velocity field appears to be random and varies unpredictably. The flow does, however, satisfy a set of……equations, which are not random. This contrast is the source of much of what is interesting in turbulence theory.*"

Leonardo da Vinci (1500)

Navier-Stokes Equation: Fundamental Equation for Fluid Turbulence

$$
\frac{\partial v}{\partial t} + v \cdot \nabla v = -\nabla p + R^{-1} \nabla^2 v + F
$$

$$
\nabla \cdot v = 0
$$

 R (= LV/viscosity) is called the Reynolds number.

Turbulence: Spatial Characteristics

- Turbulence couples large scales and small scales.
- The process of development of turbulence often starts out as large-scale motion by the excitation of waves of long wavelength that quickly produces waves of small wavelength by a domino effect.
- Wavelength and wavenumber

$$
\lambda, k = 2\pi/\lambda
$$

Clay Mathematics Institute

Hydrodynamic turbulence

Kolmogorov (1941): can get energy spectrum by dimensional analysis

Assumptions: ♦ isotropy

♦ local interaction in ^k-space

(energy moves from one *k*-shell to the next)

Energy cascade rate:
$$
\varepsilon(k) \propto k^{\alpha} E(k)^{\beta}
$$
 = constant

Energy spectrum:

 $\iint E(K) dK =$ total energy

 $\Rightarrow \alpha = 5/2, \beta = 3/2$

Kolmogorov spectrum: $E(k) \sim C_K \varepsilon^{2/3} k^{-5/3}$ Kolmogorov constant: $C_K \sim 1.4 - 2$

Interstellar turbulence

Observation: power law relation between electron density spectrum and spatial scales

From Cordes (1999)

Solar wind turbulence

Observation: power law in magnetic energy spectrum

Fig. 1. Twenty-four hours of magnetic field and plasma data demonstrating the presence of nearly pure Alfvén waves. The upper six curves are 5.04-min bulk velocity components in km/sec (diagonal lines) and magnetic field components averaged over the plasma probe sampling period, in gammas (horizontal and vertical lines). The lower two curves are magnetic field strength and proton number density.

*k***-3/2 energy spectra**

♦ overlapping spectra over a period of large scale Alfvén time

Kinetic vs magnetic spectrum -- observations

From [*Podesta, Roberts, & Goldstein* 2006], power spectra for the total kinetic energy (a) and for the total magnetic energy (b) The best fit straight line over the interval is indicated by the short red line segment.

PLASMA PHYSICS **LABORATORY**