
Abstract

 MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and

pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective

frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane

collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an

MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the

captured polychromator measurements via Selden formulas.[1]

Previous work[2] converted the single-processor IDL code into Python code, and prepared a new architecture for

multiprocessing MPTS in parallel. However, that work was not completed to the generation of output data and curve fits

that match with the previous IDL. This project refactored the Python code into a object-oriented architecture, and created a

software test suite for the new architecture which allowed identification of the code which generated the difference in

output. Another effort currently underway is to display the Thomson data in an intuitive, interactive format.

Continued Development of Python-Based

Thomson Data Analysis And Associated Visualization Tool for NSTX-U
Abstract

 
MultiPoint Thomson Scattering (MPTS) is an established,
accurate method of finding the temperature, density, and
pressure of a magnetically confined plasma. Two Nd:YAG
(1064 nm) lasers are fired into the plasma with a effective
frequency of 60 Hz, and the light is Doppler shifted by
Thomson scattering. Polychromators on the NSTX-U midplane
collect the scattered photons at various radii/scattering
angles, and the avalanche photodiode voltages are saved to
an MDSplus tree for later analysis. IDL code is then used to
determine plasma temperature, pressure, and density from
the captured polychromator measurements via Selden
formulas.[1]

Previous work[2] converted the single-processor IDL code
into Python code, and prepared a new architecture for
multiprocessing MPTS in parallel. However, that work was
not completed to the generation of output data and curve
fits that match with the previous IDL. This project
refactored the Python code into a object-oriented
architecture, and created a software test suite for the new
architecture which allowed identification of the code which
generated the difference in output. Another effort currently
underway is to display the Thomson data in an intuitive,
interactive format.

Deliverables:
1.finish Python code for MPTS operation on NSTX-U
2.Develop a Visualization Toolkit for Thomson-Scattered Data

wallace.max@gmail.com

Acknowledgements

This work was made possible by funding from the Department of
Energy for the Summer Undergraduate Laboratory Internship
(SULI) program. This work is supported by the US DOE Contract
No. DE-AC02-09CH11466. This work was supported in part by the
U.S. Department of Energy, Office of Science, Office of Workforce
Development for Teachers and Scientists (WDTS) under the
Community College Internship (CCI) program.

Future Work

• Replace integration in MPTS Analysis with fitting routine from
Bevington in Data Reduction and Error Analysis, 2003
• Write test suite for command-line parallelization for MPTS
• Save author preferences for units, scale, and preferred data
series
• Add additional interactive features, i.e., zoom, formatting
• Display and store customer-specified MDSplus data
• Include Thomson data analysis into Visualization tool,
removing delay time between NSTX-U experiment shot and
plasma characteristics

Figure 2. Software profiler output of the refactored MPTS code. While there are more

functions being called, less total time is spent in each function. Smaller, more compact code

is also easier to test and verify for correctness. The error in this code has been targeted and

identified in the curve_fit routine.

Refactoring As Debugging

 
The bulk of the refactoring effort was to separate the Python
code into distinct, atomic code sections. By isolating each
section into individually verifiable blocks with known inputs
and outputs, previously identified bugs and errors can be
located, and new software errors prevented.

Test-driven development was used to validate that the new
code behaved exactly the same at every point during the
refactor. In addition, errors which would normally propagate
throughout the software and only surface during runtime are
prevented, as the software is continually verified for
correctness during the development effort.

Deliverables:

1. Improved documentation and source code under version
control (https://github.com/wallacemax/thompy_wallace)

2.Easier to understand, performant, scalable Thomson
processing code ready for multi-processor operation

3.Include Thomson functionality into TV application on cluster
to reduce lag time between experimental shot and
determination of plasma characteristics.Figure 1. Software profiler output of the original MPTS code before the refactor. The

percentage of runtime and total function calls are displayed under each method name.

Finding an error in a complex software package such as this is difficult, if possible; and

frequently requires a line-by-line execution and a deep understanding of the code flow.

W. Wallace
Laney College, Oakland, California

Visualization for Thomson Plot Generation

Another aspect of the project is a Thomson Visualization software to quickly analyze Thomson temperature, pressure,
and density data along with other time-based signals simultaneously for correlation and intuition.

Using a Python-library interface to the MDSplus data tree, nodes are loaded and displayed intuitively to a data consumer.
An interactive cursor can be used with time-dependent data to display the nearest associated MPTS-sampled data.

At any time point in a specified shot number, a customer may export the plots displayed to either EPS or PNG format. A
further option is to also export the displayed data sets in CSV format. The exported plots are saved at 1000DPI for
printing fidelity.

The software is still under heavy development, but will ultimately be made available via the computing cluster to
interested scientists.

Figure 3. Preliminary sample output from the Thomson Visualization application currently under development.

References

[1] Selden, A. (n.d.). Simple analytic form of the relativistic Thomson
scattering spectrum. Physics Letters A, 405-406.
[2] Miller, J. Optimizing MultiPoint Thomson Scattering diagnostics in
NSTXU. APS DPP Annual Meeting, 2014, New Orleans, Louisiana.

