Simulations of EHO equilibria in the pedestal region of NSTX utilizing BOUT++
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Introduction BOUT++ Geometry

Figure 10. A closer view of the poloidal plot
shown in Figure 6 with a toroidal mode number
n=4. Notice that the filamentary structures show
a clear propagation towards the core boundary
of the simulation domain. This type of mode
structure may be a result of the location of the
domain (i.e. the outer boundary was set as the
separatrix location and not a larger value of ).

Edge localized modes (ELMs) are MHD instabilities found in the edge
region of tokamak plasmas, characterized by nearly periodic relaxations
of the pedestal and the eruption of high energy plasma towards the
reactor wall [1]. ELM behaviors are typically observed while operating at
a high confinement (H-mode) state and the physics of their onset is
currently studied through developing peeling-
ballooning (P-B) models. However,
observations from the DIII-D tokamak have
shown ELM free operation in the dubbed
guiescent H-mode, where edge harmonic
oscillations (EHOs) are present [2]. EHOs
provide a mechanism for better particle
transport within the edge region that
mitigates ELM events. In this way, operation in E'Lgl\‘/‘lr;ll A ntegah\ie '”;age of
amentary structures in
the quiescent H-r.node. would negate the need the MAST tokar:gak 3],
for ELM suppression via external resonant

*The grid files for the simulations were create using BOUT++
built-in routines

*The NSTX equilibria were obtained from the EFITO2 code,
which utilizes Thomson scattering data for temperature and : .
density measurements

~—— " *The grid size of 68 X-coordinates and 64 Y-coordinates was
S held constant for all runs

Figure 3. Geometryofa  *The BOUT++ coordinate transform from general toroidal

BOUT++ mesh grid coordinates to Cartesian coordinates is as follows [4]:
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*Linear growth rates were found for toroidal mode numbers n = 1-8 of the
form characteristic of previous studies of ELMs by Dudson [4] and Xu [1] with

the exceptionofn=5and n=7.
*The lack of mode growth for n =5 and 7 observed for NSTX shots 140989 and

magnetic fields. Ultimately, it is hoped that this would allow for a near 141125 indicates that no single eigenmode grew out of the transient phase of
steady-state edge plasma in fusion reactors and prevent damage to the Core Pedestal serape-ofiLaver s0L)  Figure 4. Plot of the | figgre 5. The the simulations

first wall and diverter surfaces. edge pressure of NSTX initial pressure Further research is required in order to explain the lack of ELM-like growth

. / with the pedestal . profile and to determine whether it is related to EHO observance in NSTX
region highlighted in o5t implemented in experimental data
% oo : blue. The separatrix e, | < the simulations *However, the data did indicate significantly lower growth rates for EHO
- - < 3 location is indicated as | || ° andobtained from equilibria simulations, in agreement with experiment
MOtlvatlonS s the boundary of the ot i+ an EHO o ’ )
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*Using an existing framework from the 3D plasma code BOUT++ (designed for Major Radius (cm) MejorRadius ()

ELM simulations) in conjunction with EHO equilibria could lead to *The grid files used in the simulation inputs had a domain bounded by the separatrix due to both a *In order to accurately simulate the plasma edge, the diverter region should be
computational verification of the experimental observations of quiescent H- incorporated into the input grid files with the appropriate equilibrium data
mode operation in NSTX *Further investigation into the absence of a growth rate for toroidal mode

\_ Y, numbers n=5 and 7, as well as the propagation of the pressure perturbation

- ) towards the core could also be conducted
. Figure 7. Spectrogram of L )

., beam emission
I spectroscopy (BES) data
+  from NSTX shot 141125.
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*The mechanisms behind QH-mode operation and EHO presence are still not
well resolved

1000 -

cutoff in the EFITO2 equilibrium files and an issue with the diverter geometry
* The profiles (e.g. pressure and parallel current) then terminated at a finite number, instead of a value

of zero
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Figure 6. Poloidal plot
showing the pressure
perturbation for toroidal
mode number n =4. The
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