(D) NSTX-U

¹Indiana University Bloomington ²Princeton Plasma Physics Laboratory ³Lawrence Livermore National Laboratory

Abstract

The toroidal momentum pinch velocity V_{ϕ} and diffusivity χ_{ϕ} in NSTX were previously determined from the transient response of the toroidal rotation W following applied n=3 magnetic perturbations that brake the plasma [1,2]. Assuming P=nmR²(- $\chi_{\phi} \nabla \Omega + V_{\phi} \Omega$), where the momentum flux Π is determined using TRANSP, these local analyses used fits to Ω and $\nabla \Omega$ to obtain χ_{ϕ} and V_{ϕ} one flux surface at a time. This work attempts to improve the accuracy of the inferred $\chi_{\phi}(\mathbf{r})$ and $V_{\phi}(\mathbf{r})$ profiles by utilizing many flux surfaces simultaneously. We employ nonlinear least-squares minimization that compares the entire perturbed rotation profile evolution $\Omega(r,t)$ against the profile evolution generated by solving the momentum transport equation. We compare the local and integrated approaches and discuss their limitations.

Importance of Momentum Transport Analysis

- Rotation profile and shear important for stability
- Rotation profile influenced by momentum transport effects, namely momentum diffusion and convective pinch
- A convective momentum pinch has been found to be important in many tokamaks
- The following work attempts to improve understanding and expand
- applicability of perturbative analysis methods (following work of Solomon, PRL 2008; Kaye, NF 2009)

Steady State Measurements Insufficient

Momentum transport equation:

$$nmR^{2}\frac{\partial\Omega(\mathbf{r},\mathbf{t})}{\partial t} = -\frac{1}{r}\frac{\partial}{\partial r}(r\Pi) + T_{\text{inj}} - T_{\text{loss}}$$

$$\mathbf{I} = nmR^{2} \left(-\chi_{\phi}(r) \frac{\partial \Omega(r,t)}{\partial r} + V_{\phi}(r) \Omega(\mathbf{r},t) \right)$$

- Actually used flux-surface-averaged version from Goldston (Varenna, 1985)
- Π = Momentum flux (kg/s^2)
- χ_{ϕ} = Momentum diffusivity (m^2/s)
- V_{ϕ} = Toroidal pinch velocity (m/s)
- Problem: In steady state χ_{ϕ} and V_{ϕ} are correlated, making them impossible to simultaneously measure

Analysis Made Possible Through Perturbations

- Solution: Use perturbed plasma state
- Apply n = 3 RMPs to brake plasma
- Use rotation profile of recovery (from TRANSP) to measure parameters

Applying PDE Fit

- Nonlinear least-squares fit comparing rotation profile to profile generated by solving momentum transport equation
- Initial guess: χ and V profiles from local analysis
- Boundary conditions:
 - Dirichlet at outer edge (Ω at outer edge = Ω from TRANSP) Flux matching at inner edge (flux at inner edge = flux from TRANSP)
 - PDE fit requires making use of all flux surfaces at once

Development of a Novel Method for Determination of Momentum Transport Parameters M. Peters¹, W. Guttenfelder², S. M. Kaye², F. Scotti³, W. M. Solomon²

