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/ PLASMA DISRUPTIONS \ / SVM CLASSIFIERS \ / RECENT WORK AT PPPL \ / OBJECTIVES FOR STUDY \

* Disruption 1s a sudden loss of plasma confinement ~ 100 ms * C(lassifiers are used to describe the state of the plasma * Extracted 50 GB of signal data from JET MDSplus tree * Identify physics-motivated classifiers for prediction
* Disruptions are characterized by two phases: * Previous work [3] identified 14 classifiers as a baseline * Wrote scripts for extracting features from signals * Multi-dimensional signals, better physics fidelity
* Thermal Quench — something like half of the * 7 Signals * Developed cross-validation routines for testing SVM * Use as classifiers for threshold tests
thermal energy is lost to the walls  Plasma Current [A] « Rewrote CV routines to be self-contained within Matlab e Learn about disruption dynamics
* Current Quench — plasma current goes to zero * Mode Lock Amplitude [T] * Achieved 100x speedup over use of C++ library * Similarities to other phenomena? (L-H transition?)
* Combmatlor} Of thermal and el§ctromagnetlc loads can * Plasma Density [m~] * Participated in Theory and Simulation of Disruptions * (Gain ability to 1identify precursors (e.g. NTMs)
damage the mside O.f the macl.nne | | « Radiated Power [W] Workshop to share progress and incite collaboration « Compare experiments to determine software portability
* No good models existiop redict disruptions because they  Total Input Power [W] * Obtained list of most recent JET disruption data e NSTX-U is right down the hallway!
result from a combination of complex phenomena , , - - , ,
[ ocked mod e d/dt Stored Diamagnetic Energy [W] * Identified SVM model parameters to be used as a baseline  Look at parameter scaling between machines
* Locked modes ..
, ,  Plasma Internal Inductance * 975d/975 nd traiing samples * Possibility of using SVM as backbone for prediction
* Vertical displacement events . , , . 0 ; : : , , .
. Bt » 2 Representations, consecutive 32 ms intervals 89.8% success at 30ms betore disruption * Train SVM on outputs of multiple predictors
' o * 2% of nondisruptive intervals give false alarms o M i 1lel with oth ict
* For ITER, need to predict with ~98% confidence et Use SV , P e. s ,O , er predic (.)rs .
* std(FFT) * Complexity of predictor limited by availability of

* Need to develop machine-portable prediction software C = 1000.000000, gamma = 10.000000

computing resources for real-time analysis

* Machine learning provides powertul tools for data-driven
science, complimentary to hypothesis-driven science
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MULTI-TIERED SVM [4]

SUPPORT VECTOR MACHINES (SVM) [1]

* (Classify disruptive vs. nondisruptive states [2,3]
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THEN I TOCK A
STATISTICS CLASS.
NOwW I DON'T

* Analyzes 3 consecutive time intervals for better accuracy
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e 1stTier — three models trained with Gaussian Kernel

Cumulative Fraction of Identified Disruptions

 Plasma state described by diagnostics (e.g. density, current) | | . . . | - S L
L 2 Tier — trained on combined Tier 1 output, Linear Kernel 2 4 0
* Solve optimization problem to find hyperplane that , o . 10 10
Incoming real-time data (Time to Disruption) / (s)
X(t)

separates disruptive/nondisruptive states in parameter space
M3 M2 M1
(SVMm) (SVM) (SVM)
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* Use model to classify new data (e.g. live from machine)

Figure 1 from G.A. Rattd et al Obligatory comic courtesy of Randall and xkcd.com
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* Trained with JET carbon-wall data Back to Basics: Better Classifiers? 4] J. Vega et al. Fusion Engineering and Design, 88 (2013)

Plasma state 1s either
disruptive or

| nondisruptive
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« 738 d/2,035,000 nd samples (Complimentary to current JET pursuits in analyzing SVM results)

* Implemented for real-time operation with ITER-like wall

* 87.5% prediction success at 30ms prior to the disruption

* Look for better classifiers with a higher physics-fidelity
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* Go back to identifying which signals and
corresponding representations are meaningful
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JET ILW campaigns C28-C30
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* Start to examine signals that have a spatial dimension
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. * ¢.g. radial profiles
Lagrange Multipliers

detected disuplions

Accumulative fraction of

Support Vectors 11} SRR S , BN LS, * Look for ways to represent higher-dimensional signals
Decisi 1' G * Independent channels Program (SULL).
ecision _ fp(x) = 3 auy K (<) 20144 P
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Disruption time - Alarm tme [s]
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Linear, Gaussian, etc.
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