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Wall conditioning improves plasma performance in NSTX

Spectroscopy determines plasma properties from emitted photons

• Electrons in neutral atoms are excited by collisions in the plasma

• A photon is emitted when an electron transitions to lower energy state

• Each atom has a set of allowed energy level transitions which produce

photons of specific wavelengths

• Spectrometers use diffraction gratings to observe wavelengths of interest

Wavelength calibration and focusing of a spectrometer

H/D ratio is determined with a curve fitting code

Wall conditioning methods are shown to reduce the H/D ratio

Conclusions
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• An LC100 linear charge-coupled device

(CCD) was installed on an HR-320

spectrometer

• Hydrogen spectra recorded at varying

distances from CCD, fitted with Gaussians

• Focal point occurs when the full-width half-

max (FWHM) is minimized.

• Right: Image of a focused (top) and

unfocused (middle) spectrum.

• Mercury and argon lamps used for

wavelength calibration

• Right: observed wavelengths plotted with

spectrometer counts, fitted with linear

regression

• Observed wavelength depends on the angle

of incidence of the incoming light, number of

grooves in the grating, and diffraction order.

𝐺𝑚𝜆 = sin 𝛼 + sin(𝛽)

• Spectral lines appear as Gaussian (right) if

temperature follows a Maxwellian distribution

• In NSTX, plasma-facing components (PFCs)

greatly affect plasma stability and performance

• Release of hydrogen-containing molecules

from PFCs can increase radiative losses in the

plasma

• Conditioning PFCs can reduce influx of

hydrogenic atoms

• Techniques include boronization, lithium pellet

injection (LPI), lithium evaporation

• Hydrogen to deuterium ratio (H/D) can indicate

wall conditioning quality

• Recorded spectra are assumed to be modeled

by Gaussian sum and third-order polynomial

background

• Interactive Data Language (IDL) procedure

MPFITFUN used to find least squares fit of the

model to the spectrum and output intensities.

• Saturated pixels are discounted from the data to

produce better fits (bottom left)
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• LPI launched small lithium pellets into the

edge plasma to introduce a Li coating on

the divertor PFCs

• This analysis did not show LPI to have a

significant effect on H/D ratio.

• Helium glow discharge cleaning (GDC) is

used to clean PFCs of hydrogenic atoms by

inducing sputtering and desorption

• Deuterated trimethylboron (TMB) is added to

He GDC to deposit a thin layer of boron on the

PFCs

• Boronization is shown to reduce H/D ratio

(left) to around 0.2 from a max of 0.5

NSTX divertor

• Time-resolved H/D is produced by analyzing a series of spectrometer

frames (bottom right)

• Histogram shows randomly distributed fitting error (top right)

• Boronization also shown to reduce brightness

of other impurities (e.g. oxygen and carbon)

• Hot boronization applied to 350 ℃ PFCs, cold

boronization at room temperature

• This analysis found an increase in H

brightness after hot boronization (left, red) over

cold (green, blue), possibly due to thermal

desorption.

• Lithium evaporation uses an Li

evaporator (LITER) to deposit

evaporated Li on the divertor.

• Li chemically sequesters deuterium

and hydrogen and prevents recycling

• In conjunction with He GDC, this

analysis has shown Li evaporation to

significantly reduce H/D from greater

than 0.25 to less than 0.1 (left).

• The developed code is shown to be a reliable method for determining H/D

ratio

• Both boronization and Li evaporation are shown to reduce observed H/D

ratio

• H/D ratio revealed no substantial correlation between LPI and decreased H

brightness

• Spectrometer calibration was used to calculate the hydrogen to deuterium

mass ratio by relating mass to wavelength

• Mass ratio was calculated at 0.511 (accepted 0.500), but with an error of ±
0.3, due to human error in reading the count displayed by the spectrometer

• Mass ratio was recalculated using the linear dispersion to determine

wavelength (equation follows) at 0.53 with an error of 0.03
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Comparison with past H/D fitting techniques

• Prior methods found the area-weighted centroid 

of the spectrum to resolve H/D

• The new method is found to track well with the 

values determined by the centroid method (right)

• The centroid method occasionally deviates from 

the Gaussian fit, as seen near t=0.3 s


